This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

Related tags

Deep Learningtts-gan
Overview

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network


This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"


Abstract: Time-series datasets used in machine learning applications often are small in size, making the training of deep neural network architectures ineffective. For time series, the suite of data augmentation tricks we can use to expand the size of the dataset is limited by the need to maintain the basic properties of the signal. Data generated by a Generative Adversarial Network (GAN) can be utilized as another data augmentation tool. RNN-based GANs suffer from the fact that they cannot effectively model long sequences of data points with irregular temporal relations. To tackle these problems, we introduce TTS-GAN, a transformer-based GAN which can successfully generate realistic synthetic time series data sequences of arbitrary length, similar to the original ones. Both the generator and discriminator networks of the GAN model are built using a pure transformer encoder architecture. We use visualizations to demonstrate the similarity of real and generated time series and a simple classification task that shows how we can use synthetically generated data to augment real data and improve classification accuracy.


Key Idea:

Transformer GAN generate synthetic time-series data

The TTS-GAN Architecture

The TTS-GAN Architecture

The TTS-GAN model architecture is shown in the upper figure. It contains two main parts, a generator, and a discriminator. Both of them are built based on the transformer encoder architecture. An encoder is a composition of two compound blocks. A multi-head self-attention module constructs the first block and the second block is a feed-forward MLP with GELU activation function. The normalization layer is applied before both of the two blocks and the dropout layer is added after each block. Both blocks employ residual connections.

The time series data processing step

The time series data processing step

We view a time-series data sequence like an image with a height equal to 1. The number of time-steps is the width of an image, W. A time-series sequence can have a single channel or multiple channels, and those can be viewed as the number of channels (RGB) of an image, C. So an input sequence can be represented with the matrix of size (Batch Size, C, 1, W). Then we choose a patch size N to divide a sequence into W / N patches. We then add a soft positional encoding value by the end of each patch, the positional value is learned during model training. Each patch will then have the data shape (Batch Size, C, 1, (W/N) + 1) This process is shown in the upper figure.


Repository structures:

./images

Several images of the TTS-GAN project

./pre-trained-models

Saved pre-trained GAN model checkpoints

dataLoader.py

The UniMiB dataset dataLoader used for loading GAN model training/testing data

LoadRealRunningJumping.py

Load real running and jumping data from UniMiB dataset

LoadSyntheticRunningJumping.py

Load Synthetic running and jumping data from the pre-trained GAN models

functions.py

The GAN model training and evaluation functions

train_GAN.py

The major GAN model training file

visualizationMetrics.py

The help functions to draw T-SNE and PCA plots

adamw.py

The adamw function file

cfg.py

The parse function used for reading parameters to train_GAN.py file

JumpingGAN_Train.py

Run this file to start training the Jumping GAN model

RunningGAN_Train.py

Run this file to start training the Running GAN model


Code Instructions:

To train the Running data GAN model:

python RunningGAN_Train.py

To train the Jumping data GAN model:

python JumpingGAN_Train.py

A simple example of visualizing the similarity between the synthetic running&jumping data and the real running&jumping data:

Running&JumpingVisualization.ipynb

Owner
Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University
This is the public GitHub page of the Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab)
Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
5 Jan 05, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022