In Search of Probeable Generalization Measures

Related tags

Deep LearningGenProb
Overview

In Search of Probeable Generalization Measures

Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Conference on Machine Learning and Applications (ICMLA) 2021 for Oral Presentation!

In Search of Probeable Generalization Measures,
Jonathan Jaegerman, Khalil Damouni, Mahdi S. Hosseini, Konstantinos N. Plataniotis, In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA)

Table of Contents

Overview

In Search of Probeable Generalization Measures evaluates and compares generalization measures to establish firm ground for further investigation and incite the production of novel deep learning algorithms that improve generalization. This repository contains the scripts used to parse through GenProb, a dataset of trained deep CNNs, processing model layer weights and computing generalization measures. You can use this code to better understand how GenProb can be used to test generalization measures and HPO algorithms. Measure calculation scripts are also provided.

image

Generalization Measures

Stable quality (SQ) refers to the stability of encoding in a deep layer that is calculated with the relative ratio of stable rank and condition number of a layer.

Effective rank (E) refers to the dimension of the output space of the transformation operated by a deep layer that is calculated with the Shannon entropy of the normalized singular values of a layer as defined in.

Frobenius norm (F) refers to the magnitude of a deep layer that is calculated with the sum of the squared values of a weight tensor.

Spectral norm (S) refers to the maximum magnitude of mapping by a transformation operated by a layer that is calculated as the maximum singular value of a weight tensor.

Further elaboration of these metrics and their equations can be found in the paper. The layer-wise processing of these metrics can be found under /source/process.py along with a list of other metrics discluded from the paper. Convolution weight tensors are first unfolded along channel axes into a 2d matrix before metrics are calculated via processing of singular values or other norm calculations. The low rank factorization preprocessing of weight matrices is also included under the EVBMF function. Metrics are aggregated accross layers

GenProb Dataset

Generalization Dataset for Probeable Measures is a family of trained models used to test the effectiveness of the measures for tracking generalization performance at earlier stages of training. We train families of models with varied hyperparameter and channel size configurations as elaborated in the paper.

The full dataset of pytorch model files can be accessed at: (LINK) --currently being uploaded

Results

Generalization measures plotted against generalization performance metrics at progressive epochs of training for models optimized with Adam from the GenProb dataset.

Evolution of generalization measure correlation with generalization performance metrics over epochs of training for models optimized with Adam from the GenProb dataset.

Requirements

We use Python 3.7.

Software

Please find required libraries in the requirements.txt file.

Usage

Pretrained Models

GenProb pretrianed model weights should be placed in the GenProb/models/GenProb. Other pretrained model weight may be placed anywhere, and the path must be specified in source/parsing_agent.py.

Within source/main.py, the library of models must be specified, alongside the hyperparameter configuration wanted. For GenProb, that includes the number of epochs trained for, and the dataset. Evaluations may be done in batches, using the boolean new. If set to 0, evaluation will begin at the index specified by start. The name of the file the results should be appened to must be specified as well. Otherwise, it will begin at the first file in the folder, and appened results to a new file.

This outputs a csv file, with the metrics evaluation on a layer-wise basis. These may be aggregated as wanted, or by using methods specified in the paper through use of the file source/qualities.py.

Common Issues (running list)

Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022