RoboDesk A Multi-Task Reinforcement Learning Benchmark

Related tags

Deep Learningrobodesk
Overview

RoboDesk

PyPI

A Multi-Task Reinforcement Learning Benchmark

Robodesk Banner

If you find this open source release useful, please reference in your paper:

@misc{kannan2021robodesk,
  author = {Harini Kannan and Danijar Hafner and Chelsea Finn and Dumitru Erhan},
  title = {RoboDesk: A Multi-Task Reinforcement Learning Benchmark},
  year = {2021},
  howpublished = {\url{https://github.com/google-research/robodesk}},
}

Highlights

  • Diversity: RoboDesk includes 9 diverse tasks that test for a variety of different behaviors within the same environment, making it useful for evaluating transfer, multi-task learning, and global exploration.
  • Complexity: The high-dimensional image inputs contain objects of different shapes and colors, whose initial positions are randomized to avoid naive memorization and require learning algorithms to generalize.
  • Robustness: We carefully designed and tested RoboDesk to ensure fast and stable physics simulation. This avoids objects from intersecting, getting stuck, or quickly flying away, a common problem with some existing environments.
  • Lightweight: RoboDesk comes as a self-contained Python package with few dependencies. The source code is clean and pragmatic, making it a useful blueprint for creating new MuJoCo environments.

Training Agents

Installation: pip3 install -U robodesk

The environment follows the OpenAI Gym interface:

import robodesk

env = robodesk.RoboDesk(seed=0)
obs = env.reset()
assert obs.shape == (64, 64, 3)

done = False
while not done:
  action = env.action_space.sample()
  obs, reward, done, info = env.step(action)

Tasks

Robodesk Tasks

The behaviors above were learned using the Dreamer agent. These policies have been learned from scratch and only from pixels, not proprioceptive states.

Task Description
open_slide Push the sliding door all the way to the right, navigating around the other objects.
open_drawer Pull the dark brown drawer all the way open.
push_green Push the green button to turn the green light on.
stack_blocks Stack the upright blue block on top of the flat green block.
upright_block_off_table Push the blue upright block off the table.
flat_block_in_bin Push the green flat block into the blue bin.
flat_block_in_shelf Push the green flat block into the shelf, navigating around the other blocks.
lift_upright_block Grasp the blue upright block and lift it above the table.
lift_ball Grasp the magenta ball and lift it above the table.

Environment Details

Constructor

robodesk.RoboDesk(task='open_slide', reward='dense', action_repeat=1, episode_length=500, image_size=64)
Parameter Description
task Available tasks are open_slide, open_drawer, push_green, stack, upright_block_off_table, flat_block_in_bin, flat_block_in_shelf, lift_upright_block, lift_ball.
reward Available reward types are dense, sparse, success. Success gives only the first sparse reward during the episode, useful for computing success rates during evaluation.
action_repeat Reduces the control frequency by applying each action multiple times. This is faster than using an environment wrapper because only the needed images are rendered.
episode_length Time limit for the episode, can be None.
image_size Size of the image observations in pixels, used for both height and width.

Reward

All rewards are bound between 0 and 1. There are three types of rewards available:

  • Dense rewards are based on Euclidean distances between the objects and their target positions and can include additional terms, for example to encourage the arm to reach the object. These are the easiest rewards for learning.
  • Sparse rewards are either 0 or 1 based on whether the target object is in the target area or not, according to a fixed threshold. Learning from sparse rewards is more challenging.
  • Success rewards are equivalent to the sparse rewards, except that only the first reward is given during each episode. As a result, an episode return of 0 means failure and 1 means sucess at the task. This should only be used during evaluation.

Termination

Episodes end after 500 time steps by default. There are no early terminations.

Observation Space

Each observation is a dictionary that contains the current image, as well as additional information. For the standard benchmark, only the image should be used for learning. The observation dictionary contains the following keys:

Key Space
image Box(0, 255, (64, 64, 3), np.uint8)
qpos_robot Box(-np.inf, np.inf, (9,), np.float32)
qvel_robot Box(-np.inf, np.inf, (9,), np.float32)
qpos_objects Box(-np.inf, np.inf, (26,), np.float32)
qvel_objects Box(-np.inf, np.inf, (26,), np.float32)
end_effector Box(-np.inf, np.inf, (3,), np.float32)

Action Space

RoboDesk uses end effector control with a simple bounded action space:

Box(-1, 1, (5,), np.float32)

Acknowledgements

We thank Ben Eysenbach and Debidatta Dwibedi for their helpful feedback.

Our benchmark builds upon previously open-sourced work. We build upon the desk XMLs first introduced in [1], the Franka XMLs open-sourced in [2], and the Franka meshes open-sourced in [3].

Questions

Please open an issue on Github.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022