Tensorflow implementation of Swin Transformer model.

Overview

Swin Transformer (Tensorflow)

Tensorflow reimplementation of Swin Transformer model.

Based on Official Pytorch implementation. image

Requirements

  • tensorflow >= 2.4.1

Pretrained Swin Transformer Checkpoints

ImageNet-1K and ImageNet-22K Pretrained Checkpoints

name pretrain resolution [email protected] #params model
swin_tiny_224 ImageNet-1K 224x224 81.2 28M github
swin_small_224 ImageNet-1K 224x224 83.2 50M github
swin_base_224 ImageNet-22K 224x224 85.2 88M github
swin_base_384 ImageNet-22K 384x384 86.4 88M github
swin_large_224 ImageNet-22K 224x224 86.3 197M github
swin_large_384 ImageNet-22K 384x384 87.3 197M github

Examples

Initializing the model:

from swintransformer import SwinTransformer

model = SwinTransformer('swin_tiny_224', num_classes=1000, include_top=True, pretrained=False)

You can use a pretrained model like this:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

If you use a pretrained model with TPU on kaggle, specify use_tpu option:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

Example: TPU training on Kaggle

Citation

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}
Comments
  • no module name 'swintransformer' error

    no module name 'swintransformer' error

    I wounder where the from swintransformer import SwinTransformer come from? I tried to pip install it, it also said that there is no such module. How can I overcome this problem?

    opened by HunarAA 2
  • Pretrained Swin-Transformer for multiple output

    Pretrained Swin-Transformer for multiple output

    Hi rishigami,

    Thank you for the implementation in Tensorflow. I am trying to use the Swin Transformer for a classification problem with multiple outputs. In your guide on how to use a pertained model you put it in a Sequential mode, but in this way I am not able to stack multiple dense layer for the multiple classification, could you help me understand how can I adapt your TF code to my problem, using it in a Functional API way maybe?

    opened by imanuelroz 2
  • NotImplementedError during model save

    NotImplementedError during model save

    I have defined a model as follows:

    def buildModel(LR = LR):
        backbone = SwinTransformer('swin_large_224', num_classes=None, include_top=False, pretrained=True, use_tpu=False)
        
        inp = L.Input(shape=(224,224,3))
        emb = backbone(inp)
        out = L.Dense(1,activation="relu")(emb)
        
        model = tf.keras.Model(inputs=inp,outputs=out)
        optimizer = tf.keras.optimizers.Adam(lr = LR)
        model.compile(loss="mse",optimizer=optimizer,metrics=[tf.keras.metrics.RootMeanSquaredError()])
        return model
    

    Now when I save this model using model.save("./model.hdf5") I get the following error:

    NotImplementedError                       Traceback (most recent call last)
    /tmp/ipykernel_43/131311624.py in <module>
    ----> 1 model.save("model.hdf5")
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in save(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
       2000     # pylint: enable=line-too-long
       2001     save.save_model(self, filepath, overwrite, include_optimizer, save_format,
    -> 2002                     signatures, options, save_traces)
       2003 
       2004   def save_weights(self,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/save.py in save_model(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
        152           'or using `save_weights`.')
        153     hdf5_format.save_model_to_hdf5(
    --> 154         model, filepath, overwrite, include_optimizer)
        155   else:
        156     saved_model_save.save(model, filepath, overwrite, include_optimizer,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/hdf5_format.py in save_model_to_hdf5(model, filepath, overwrite, include_optimizer)
        113 
        114   try:
    --> 115     model_metadata = saving_utils.model_metadata(model, include_optimizer)
        116     for k, v in model_metadata.items():
        117       if isinstance(v, (dict, list, tuple)):
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        156   except NotImplementedError as e:
        157     if require_config:
    --> 158       raise e
        159 
        160   metadata = dict(
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        153   model_config = {'class_name': model.__class__.__name__}
        154   try:
    --> 155     model_config['config'] = model.get_config()
        156   except NotImplementedError as e:
        157     if require_config:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_config(self)
        648 
        649   def get_config(self):
    --> 650     return copy.deepcopy(get_network_config(self))
        651 
        652   @classmethod
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_network_config(network, serialize_layer_fn)
       1347         filtered_inbound_nodes.append(node_data)
       1348 
    -> 1349     layer_config = serialize_layer_fn(layer)
       1350     layer_config['name'] = layer.name
       1351     layer_config['inbound_nodes'] = filtered_inbound_nodes
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        248         return serialize_keras_class_and_config(
        249             name, {_LAYER_UNDEFINED_CONFIG_KEY: True})
    --> 250       raise e
        251     serialization_config = {}
        252     for key, item in config.items():
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        243     name = get_registered_name(instance.__class__)
        244     try:
    --> 245       config = instance.get_config()
        246     except NotImplementedError as e:
        247       if _SKIP_FAILED_SERIALIZATION:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in get_config(self)
       2252 
       2253   def get_config(self):
    -> 2254     raise NotImplementedError
       2255 
       2256   @classmethod
    
    NotImplementedError: 
    
    opened by Bibhash123 1
  • Invalid argument

    Invalid argument

    this is my basic model

    
    with tpu_strategy.scope():
        model = tf.keras.Sequential([
                            tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(data, mode="torch"), 
                                                                input_shape=[224,224, 3]),
                            SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
                            tf.keras.layers.Dense(1, activation='sigmoid')
                                            ])
    
    model.compile(loss = tf.keras.losses.BinaryCrossentropy(),
                              optimizer = tf.keras.optimizers.Adam(learning_rate=cfg['LEARNING_RATE']),
                              metrics   = RMSE)
    
    

    I am getting this error,

    (3) Invalid argument: {{function_node __inference_train_function_705020}} Reshape's input dynamic dimension is decomposed into multiple output dynamic dimensions, but the constraint is ambiguous and XLA can't infer the output dimension %reshape.12202 = f32[256,144,576]{2,1,0} reshape(f32[36864,576]{1,0} %transpose.12194), metadata={op_type="Reshape" op_name="sequential_40/swin_large_384/sequential_39/basic_layer_28/sequential_35/swin_transformer_block_169/window_attention_169/layers0/blocks1/attn/qkv/Tensordot"}. [[{{node TPUReplicate/_compile/_17658394825749957328/_4}}]] [[tpu_compile_succeeded_assert/_11424487196827204192/_5/_209]]

    opened by AliKayhanAtay 1
  • relative_position_bias_table initialization

    relative_position_bias_table initialization

    Hi, In the official code, relative_position_bias_table is initialized in a truncated normal distribution. Is that part missing in this repo?

    Official code: https://github.com/microsoft/Swin-Transformer/blob/6bbd83ca617db8480b2fb9b335c476ffaf5afb1a/models/swin_transformer.py#L110

    This implem https://github.com/rishigami/Swin-Transformer-TF/blob/8986ca7b0e1f984437db2d8f17e0ecd87fadcd4f/swintransformer/model.py?_pjax=%23js-repo-pjax-container%2C%20div%5Bitemtype%3D%22http%3A%2F%2Fschema.org%2FSoftwareSourceCode%22%5D%20main%2C%20%5Bdata-pjax-container%5D#L70

    opened by gathierry 1
  • Image size other than default ones doesn't work

    Image size other than default ones doesn't work

    • Notebook: https://colab.research.google.com/drive/1nqYkQCUzShkVdqGxW4TyMrtAb0n5MBZR#scrollTo=G9ZVlphmqD7d Issue:
    • In swin_tiny_224 I've tried multiple of 224, 512x512, multiple of window_size. But nothing seems to work other than the 224x224.
    • Same goes for swin_large_384, only default size 384x384 works.

    I'm wondering if this is expected behavior or not. Is there any way to make it work for non-square image?

    opened by awsaf49 1
  • Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Tested and working, ie:

    IMAGE_SIZE = [112, 112, 112]
    NUM_CLASSES = 10
    
    model_3d = tf.keras.Sequential([
      swin_transformer_nd.SwinTransformerModel(img_size=IMAGE_SIZE, patch_size=(4, 4, 4), depths=[2, 2, 6]),
      tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
    ])
    model_3d.compile(tf.keras.optimizers.Adam(), "categorical_crossentropy")
    
    for i in range(100):
        x = np.zeros([1, *IMAGE_SIZE, 1])
        y = tf.zeros([1, NUM_CLASSES])
        
        model_3d.fit(x, y)
        print("Trained on a batch")
    
    opened by MohamadZeina 0
  • Could you provide weights convert script?

    Could you provide weights convert script?

    I tried code and weights you provided, and find the performance is bad. Could you pleaase to provide weights convert script for me to figure out this issue?

    Many thanks

    opened by edwardyehuang 0
  • tf load model is erro

    tf load model is erro

    import tensorflow as tf from swintransformer import SwinTransformer model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]), SwinTransformer('swin_tiny_224', include_top=False, pretrained=True), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ])

    tf can't load pre trained model。this step is errro

    opened by jangjiun 0
  • Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Has anyone tried to use the pretrained model with TimeDistributed layer ?

    model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), 
    input_shape=[224,224, 3]), SwinTransformer('swin_base_224', include_top=False, pretrained=True)])
    
    model_f = models.Sequential()
    	model.add(TimeDistributed(model, input_shape= (8,224,224,3)) 
    
    

    I get the following error:

    NotImplementedError: Exception encountered when calling layer "time_distributed" (type TimeDistributed).
    
    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel).
    
    Call arguments received by layer "time_distributed" (type TimeDistributed):
      • inputs=tf.Tensor(shape=(None, 8, 224, 224, 3), dtype=float32)
      • training=False
    
    
    opened by atelili 0
Releases(v0.1-tf-swin-weights)
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022