Rendering Point Clouds with Compute Shaders

Overview

Compute Shader Based Point Cloud Rendering

This repository contains the source code to our techreport:
Rendering Point Clouds with Compute Shaders and Vertex Order Optimization
Markus Schütz, Bernhard Kerbl, Michael Wimmer. (not peer-reviewed, currently in submission)

  • Compute shaders can render point clouds up to an order of magnitude faster than GL_POINTS.
  • With a combination of warp-wide deduplication and early-z, compute shaders able to render 796 million points (12.7GB) at stable 62 to 64 frames per second in various different viewpoints on an RTX 3090. This corresponds to a memory bandwidth utilization of about 802GB/s, or a throughput of about 50 billion points per second.
  • The vertex order also strongly affects the performance. Some locality of points that are consecutive in memory is beneficial, but excessive locality can result in drastic slowdowns if it leads to thousands of GPU threads attempting to update a single pixel. As such, neither Morton ordered nor shuffled buffers are optimal. However combining both by first sorting by Morton code, and then shuffling batches of 128 points but leaving points within a batch in order, results in an improved ordering that ensures high performance with our compute approaches, and it also increases the performance of GL_POINTS by up to 5 times.

About the Framework

This framework is written in C++ and JavaScript (using V8). Most of the rendering is done in JavaScript with bindings to OpenGL 4.5 functions. It is written with live-coding in mind, so many javascript files are immediately executed at runtime as soon as they are saved by any text editor. As such, code has to be written with repeated execution in mind.

Getting Started

  • Compile Skye.sln project with Visual Studio.
  • Open the workspace in vscode.
  • Open "load_pointcloud.js" (quick search files via ctrl + e).
    • Adapt the path to the correct location of the las file.
    • Adapt position and lookAt to a viewpoint that fits your point cloud.
    • Change window.x to something that fits your monitor setup, e.g., 0 if you've got a single monitor, or 2540 if you've got two monitors and your first one has a with of 2540 pixels.
  • Press "Ctrl + Shift + B" to start the app. You should be seing an empty green window. (window.x is not yet applied)
  • Once you save "load_pointcloud.js" via ctrl+s, it will be executed, the window will be repositioned, and the point cloud will be loaded.
  • You can change position and lookAt at runtime and apply them by simply saving load_pointcloud.js again. The pointcloud will not be loaded again - to do so, you'll need to restart first.

After loading the point cloud, you should be seeing something like the screenshot below. The framework includes an IMGUI window with frame times, and another window that lets you switch between various rendering methods. Best try with data sets with tens of millions or hundreds of millions of points!

sd

Code Sections

Code for the individual rendering methods is primarily found in the modules/compute_<methods> folders.

Method Location
atomicMin ./modules/compute
reduce ./modules/compute_ballot
early-z ./modules/compute_earlyDepth
reduce & early-z ./modules/compute_ballot_earlyDepth
dedup ./modules/compute_ballot_earlyDepth_dedup
HQS ./modules/compute_hqs
HQS1R ./modules/compute_hqs_1x64bit_fast
busy-loop ./modules/compute_guenther
just-set ./modules/compute_just_set

Results

Frame times when rendering 796 million points on an RTX 3090 in a close-up viewpoint. Times in milliseconds, lower is better. The compute methods reduce (with early-z) and dedup (with early-z) yield the best results with Morton order (<16.6ms, >60fps). The shuffled Morton order greatly improves performance of GL_POINTS and some compute methods, and it is usually either the fastest or within close margins of the fastest combinations of rendering method and ordering.

Not depicted is that the dedup method is the most stable approach that continuously maintains >60fps in all viewpoints, while the performance of the reduce method varies and may drop to 50fps in some viewpoints. As such, we would recomend to use dedup in conjunction with Morton order if the necessary compute features are available, and reduce (with early-z) for wider support.

Comments
  • Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Hi, just found this paper & project via graphics weekly news.. just compiled the demo, and seems uses that dataset by default (banyunibo_inside_morton).. anyway to obtain that dataset? if not can you provide some download link to some huge & equivalent data set used by the demo like retz,eclepens,etc.. are this datasets under non "open" licenses? just wanted to test performance on my Titan V compared to a 3090.. thanks..

    opened by oscarbg 11
  • invisible window

    invisible window

    If I compile in DEBUG (VS2019) it crashes in void V8Helper::setupGL in this line: setupV8GLExtBindings(tpl);

    If I compile in RELEASE it compiles and the console shows no error but the windows is invisible, I can only see the console (and if I click keys I see them in the log).

    I have a 1070

    opened by jagenjo 3
  • A question of render.cs

    A question of render.cs

    image in render.cs there's vec2 variable called imgPos, i don't know why it times 0.5 and plus 0.5, what does it mean? Thank you very much if you can answer my questions. : )

    opened by UMR19 2
  • Questions about point cloud display when zoom in

    Questions about point cloud display when zoom in

    Hi, Thanks for your excellent job, just i compiled the demo and modified the setting to load my point cloud, it loaded successfully and have a better performance. but when i roll the mouse wheel to zoom in to look at the detail, lots of point missed, but when i use potree to display my point cloud, it display perfect. I am a beginner in computer graphics,may be it's point size is too small? image In the potree image

    Thanks for you reply:)

    opened by UMR19 0
  • ssRG and ssBA not bound to resolve?

    ssRG and ssBA not bound to resolve?

    In https://github.com/m-schuetz/compute_rasterizer/blob/master/compute_hqs/render.js

    Both buffers are bound in the render attribute pass, but neither is explicitly bound in the resolve pass. Always assumed that bindBufferBase affects the currently bound shader, but apparently the binding caries over to the next shader? Just a reminder to look this up to clarify my understanding of how they work.

    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 3, ssRG);
    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 4, ssBA);
    
    opened by m-schuetz 0
Releases(build_laz_crf)
Owner
Markus Schütz
Markus Schütz
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022