[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

Overview

MedMNIST

Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21)

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni

We introduce MedMNIST v2, a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D / 3D neural networks and open-source / commercial AutoML tools.

MedMNISTv2_overview

For more details, please refer to our paper:

MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification (arXiv)

Key Features

  • Diverse: It covers diverse data modalities, dataset scales (from 100 to 100,000), and tasks (binary/multi-class, multi-label, and ordinal regression). It is as diverse as the VDD and MSD to fairly evaluate the generalizable performance of machine learning algorithms in different settings, but both 2D and 3D biomedical images are provided.
  • Standardized: Each sub-dataset is pre-processed into the same format, which requires no background knowledge for users. As an MNIST-like dataset collection to perform classification tasks on small images, it primarily focuses on the machine learning part rather than the end-to-end system. Furthermore, we provide standard train-validation-test splits for all datasets in MedMNIST v2, therefore algorithms could be easily compared.
  • Lightweight: The small size of 28×28 (2D) or 28×28×28 (3D) is friendly to evaluate machine learning algorithms.
  • Educational: As an interdisciplinary research area, biomedical image analysis is difficult to hand on for researchers from other communities, as it requires background knowledge from computer vision, machine learning, biomedical imaging, and clinical science. Our data with Creative Commons (CC) Licenses is easy to use for educational purposes.

Please note that this dataset is NOT intended for clinical use.

Code Structure

  • medmnist/:
    • dataset.py: PyTorch datasets and dataloaders of MedMNIST.
    • evaluator.py: Standardized evaluation functions.
    • info.py: Dataset information dict for each subset of MedMNIST.
  • examples/:
    • getting_started.ipynb: To explore the MedMNIST dataset with jupyter notebook. It is ONLY intended for a quick exploration, i.e., it does not provide full training and evaluation functionalities.
    • getting_started_without_PyTorch.ipynb: This notebook provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • setup.py: To install medmnist as a module.
  • [EXTERNAL] MedMNIST/experiments: training and evaluation scripts to reproduce both 2D and 3D experiments in our paper, including PyTorch, auto-sklearn, AutoKeras and Google AutoML Vision together with their weights ;)

Installation and Requirements

Setup the required environments and install medmnist as a standard Python package:

pip install --upgrade git+https://github.com/MedMNIST/MedMNIST.git

Check whether you have installed the latest version:

>>> import medmnist
>>> print(medmnist.__version__)

The code requires only common Python environments for machine learning. Basically, it was tested with

  • Python 3 (Anaconda 3.6.3 specifically)
  • PyTorch==1.3.1
  • numpy==1.18.5, pandas==0.25.3, scikit-learn==0.22.2, Pillow==8.0.1, fire

Higher (or lower) versions should also work (perhaps with minor modifications).

If you use PyTorch

  • Great! Our code is designed to work with PyTorch.

  • Explore the MedMNIST dataset with jupyter notebook (getting_started.ipynb), and train basic neural networks in PyTorch.

If you do not use PyTorch

  • Although our code is tested with PyTorch, you are free to parse them with your own code (without PyTorch or even without Python!), as they are only standard NumPy serialization files. It is simple to create a dataset without PyTorch.
  • Go to getting_started_without_PyTorch.ipynb, which provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • Simply change the super class of MedMNIST from torch.utils.data.Dataset to collections.Sequence, you will get a standard dataset without PyTorch. Check dataset_without_pytorch.py for more details.
  • You still have most functionality of our MedMNIST code ;)

Dataset

Please download the dataset(s) via Zenodo. You could also use our code to download automatically by setting download=True in dataset.py.

The MedMNIST dataset contains several subsets. Each subset (e.g., pathmnist.npz) is comprised of 6 keys: train_images, train_labels, val_images, val_labels, test_images and test_labels.

  • train_images / val_images / test_images: N × 28 × 28 for 2D gray-scale datasets, N × 28 × 28 × 3 for 2D RGB datasets, N × 28 × 28 × 28 for 3D datasets. N denotes the number of samples.
  • train_labels / val_labels / test_labels: N x L. N denotes the number of samples. L denotes the number of task labels; for single-label (binary/multi-class) classification, L=1, and {0,1,2,3,..,C} denotes the category labels (C=1 for binary); for multi-label classification L!=1, e.g., L=14 for chestmnist.npz.

Command Line Tools

  • List all available datasets:

      python -m medmnist available
    
  • Download all available datasets:

      python -m medmnist download
    
  • Delete all downloaded npz from root:

      python -m medmnist clean
    
  • Print the dataset details given a subset flag:

      python -m medmnist info --flag=xxxmnist
    
  • Save the dataset as standard figure and csv files, which could be used for AutoML tools, e.g., Google AutoML Vision:

      python -m medmnist save --flag=xxxmnist --folder=tmp/
    
  • Parse and evaluate a standard result file, refer to Evaluator.parse_and_evaluate for details.

      python -m medmnist evaluate --path=folder/{flag}_{split}@{run}.csv
    

Citation

If you find this project useful, please cite both v1 and v2 paper as:

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni. "MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification". arXiv preprint arXiv:2110.14795, 2021.

Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.

or using the bibtex:

@article{medmnistv2,
    title={MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification},
    author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing},
    journal={arXiv preprint arXiv:2110.14795},
    year={2021}
}
 
@inproceedings{medmnistv1,
    title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis},
    author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing},
    booktitle={IEEE 18th International Symposium on Biomedical Imaging (ISBI)},
    pages={191--195},
    year={2021}
}

Please also cite the corresponding paper of source data if you use any subset of MedMNIST as per the project page.

LICENSE

The code is under Apache-2.0 License.

The datasets are under Creative Commons (CC) Licenses in general. Each subset keeps the same license as that of the source dataset.

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022