[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

Overview

MedMNIST

Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21)

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni

We introduce MedMNIST v2, a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D / 3D neural networks and open-source / commercial AutoML tools.

MedMNISTv2_overview

For more details, please refer to our paper:

MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification (arXiv)

Key Features

  • Diverse: It covers diverse data modalities, dataset scales (from 100 to 100,000), and tasks (binary/multi-class, multi-label, and ordinal regression). It is as diverse as the VDD and MSD to fairly evaluate the generalizable performance of machine learning algorithms in different settings, but both 2D and 3D biomedical images are provided.
  • Standardized: Each sub-dataset is pre-processed into the same format, which requires no background knowledge for users. As an MNIST-like dataset collection to perform classification tasks on small images, it primarily focuses on the machine learning part rather than the end-to-end system. Furthermore, we provide standard train-validation-test splits for all datasets in MedMNIST v2, therefore algorithms could be easily compared.
  • Lightweight: The small size of 28×28 (2D) or 28×28×28 (3D) is friendly to evaluate machine learning algorithms.
  • Educational: As an interdisciplinary research area, biomedical image analysis is difficult to hand on for researchers from other communities, as it requires background knowledge from computer vision, machine learning, biomedical imaging, and clinical science. Our data with Creative Commons (CC) Licenses is easy to use for educational purposes.

Please note that this dataset is NOT intended for clinical use.

Code Structure

  • medmnist/:
    • dataset.py: PyTorch datasets and dataloaders of MedMNIST.
    • evaluator.py: Standardized evaluation functions.
    • info.py: Dataset information dict for each subset of MedMNIST.
  • examples/:
    • getting_started.ipynb: To explore the MedMNIST dataset with jupyter notebook. It is ONLY intended for a quick exploration, i.e., it does not provide full training and evaluation functionalities.
    • getting_started_without_PyTorch.ipynb: This notebook provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • setup.py: To install medmnist as a module.
  • [EXTERNAL] MedMNIST/experiments: training and evaluation scripts to reproduce both 2D and 3D experiments in our paper, including PyTorch, auto-sklearn, AutoKeras and Google AutoML Vision together with their weights ;)

Installation and Requirements

Setup the required environments and install medmnist as a standard Python package:

pip install --upgrade git+https://github.com/MedMNIST/MedMNIST.git

Check whether you have installed the latest version:

>>> import medmnist
>>> print(medmnist.__version__)

The code requires only common Python environments for machine learning. Basically, it was tested with

  • Python 3 (Anaconda 3.6.3 specifically)
  • PyTorch==1.3.1
  • numpy==1.18.5, pandas==0.25.3, scikit-learn==0.22.2, Pillow==8.0.1, fire

Higher (or lower) versions should also work (perhaps with minor modifications).

If you use PyTorch

  • Great! Our code is designed to work with PyTorch.

  • Explore the MedMNIST dataset with jupyter notebook (getting_started.ipynb), and train basic neural networks in PyTorch.

If you do not use PyTorch

  • Although our code is tested with PyTorch, you are free to parse them with your own code (without PyTorch or even without Python!), as they are only standard NumPy serialization files. It is simple to create a dataset without PyTorch.
  • Go to getting_started_without_PyTorch.ipynb, which provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • Simply change the super class of MedMNIST from torch.utils.data.Dataset to collections.Sequence, you will get a standard dataset without PyTorch. Check dataset_without_pytorch.py for more details.
  • You still have most functionality of our MedMNIST code ;)

Dataset

Please download the dataset(s) via Zenodo. You could also use our code to download automatically by setting download=True in dataset.py.

The MedMNIST dataset contains several subsets. Each subset (e.g., pathmnist.npz) is comprised of 6 keys: train_images, train_labels, val_images, val_labels, test_images and test_labels.

  • train_images / val_images / test_images: N × 28 × 28 for 2D gray-scale datasets, N × 28 × 28 × 3 for 2D RGB datasets, N × 28 × 28 × 28 for 3D datasets. N denotes the number of samples.
  • train_labels / val_labels / test_labels: N x L. N denotes the number of samples. L denotes the number of task labels; for single-label (binary/multi-class) classification, L=1, and {0,1,2,3,..,C} denotes the category labels (C=1 for binary); for multi-label classification L!=1, e.g., L=14 for chestmnist.npz.

Command Line Tools

  • List all available datasets:

      python -m medmnist available
    
  • Download all available datasets:

      python -m medmnist download
    
  • Delete all downloaded npz from root:

      python -m medmnist clean
    
  • Print the dataset details given a subset flag:

      python -m medmnist info --flag=xxxmnist
    
  • Save the dataset as standard figure and csv files, which could be used for AutoML tools, e.g., Google AutoML Vision:

      python -m medmnist save --flag=xxxmnist --folder=tmp/
    
  • Parse and evaluate a standard result file, refer to Evaluator.parse_and_evaluate for details.

      python -m medmnist evaluate --path=folder/{flag}_{split}@{run}.csv
    

Citation

If you find this project useful, please cite both v1 and v2 paper as:

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni. "MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification". arXiv preprint arXiv:2110.14795, 2021.

Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.

or using the bibtex:

@article{medmnistv2,
    title={MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification},
    author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing},
    journal={arXiv preprint arXiv:2110.14795},
    year={2021}
}
 
@inproceedings{medmnistv1,
    title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis},
    author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing},
    booktitle={IEEE 18th International Symposium on Biomedical Imaging (ISBI)},
    pages={191--195},
    year={2021}
}

Please also cite the corresponding paper of source data if you use any subset of MedMNIST as per the project page.

LICENSE

The code is under Apache-2.0 License.

The datasets are under Creative Commons (CC) Licenses in general. Each subset keeps the same license as that of the source dataset.

🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022