Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Overview

Authors:

Code for sound field predictions in domains with Neumann and impedance boundaries. Used for generating results from the paper "Physics-informed neural networks for 1D sound field predictions with parameterized sources and impedance boundaries" by N. Borrel-Jensen, A. P. Engsig-Karup, and C. Jeong.

Run

Train

Run

python3 main_train.py --path_settings="path/to/script.json"

Scripts for setting up models with Neumann, frequency-independent and dependent boundaries can be found in scripts/settings (see JSON settings).

Evaluate

Run

python3 main_evaluate.py

The settings are

do_animations = do_side_by_side_plot = ">
id_dir = <unique id>
settings_filename = 'settings.json'
base_dir = "path/to/base/dir"

do_plots_for_paper = <bool>
do_animations = <bool>
do_side_by_side_plot = <bool>

The id_dir corresponds to the output directory generated after training, settings_filename is the name of the settings file used for training (located inside the id_dir directory), base_dir is the path to the base directory (see Input/output directory structure).

Evaluate model execution time

To evaluate the execution time of the surrogate model, run

python3 main_evaluate_timings.py --path_settings="path/to/script.json" --trained_model_tag="trained-model-dir"

The trained_model_tag is the directory with the trained model weights trained using the scripts located at the path given in path_settings.

Settings

Input/output directory structure

The input data should be located in a specific relative directory structure as (data used for the paper can be downloaded here)

base_path/
    trained_models/
        trained_model_tag/
            checkpoint
            cp.ckpt.data-00000-of-00001
            cp.ckpt.index
    training_data/
        freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.02_srcs3.hdf5
        ...
        freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs3.hdf5
        ...
        neumann_1D_2000.00Hz_sigma0.2_c1_srcs3.hdf5
        ...

The reference data are located inside the training_data/ directory generated, where the data for impedance boundaries are generated using our SEM simulator, and for Neumann boundaries, the Python script main_generate_analytical_data.py was used.

Output result data are located inside the results folder

base_path/
    results/
        id_folder/
            figs/
            models/
                LossType.PINN/
                    checkpoint
                    cp.ckpt.data-00000-of-00001
                    cp.ckpt.index
            settings.json

The settings.json file is identical to the settings file used for training indicated by the --path_settings argument. The directory LossType.PINN contains the trained model weights.

JSON settings

The script scripts/settings/neumann.json was used for training the Neumann model from the paper

{
    "id": "neumann_srcs3_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",
    
    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "boundary_type": "NEUMANN",
    "data_filename": "neumann_1D_2000.00Hz_sigma0.2_c1_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_indep.json was used for training the Neumann model from the paper

{
    "id": "freq_indep_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "boundary_type": "IMPEDANCE_FREQ_INDEP",
    "data_filename": "freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs7.hdf5",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "impedance_data": {
        "__comment1__": "xi is the acoustic impedance ONLY for freq. indep. boundaries",
        "xi": 5.83
    },

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,
    
    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_dep.json was used for training the Neumann model from the paper

{
    "id": "freq_dep_sine_3_256_7sources_d01",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 50000,
    "stop_loss_value": 0.0002,

    "do_transfer_learning": false,

    "boundary_type": "IMPEDANCE_FREQ_DEP",
    "data_filename": "freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.10_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "__comment1__": "NN setting for the auxillary differential ODE",
    "activation_ade": "tanh",
    "num_layers_ade": 3,
    "num_neurons_ade": 20,

    "impedance_data": {
        "d": 0.1,
        "type": "IMPEDANCE_FREQ_DEP",
        "lambdas": [7.1109025021758407,205.64002739443146],
        "alpha": [6.1969460587749818],
        "beta": [-15.797795759219973],
        "Yinf": 0.76935257750377573,
        "A": [-7.7594660571346719,0.0096108036858666163],
        "B": [-0.016951521199665469],
        "C": [-2.4690553703530442]
      },

    "accumulator_factors": [10.26, 261.37, 45.88, 21.99],

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1,
        "ade":[10,10,10,10]
    },

    "verbose_out": false,
    "show_plots": false
}

HPC (DTU)

The scripts for training the models on the GPULAB clusters at DTU are located at scripts/settings/run_*.sh.

VSCode

Launch scripts for VS Code are located inside .vscode and running the settings script local_train.json in debug mode is done selecting the Python: TRAIN scheme (open pinn-acoustics.code-workspace to enable the workspace).

License

See LICENSE

Owner
DTU Acoustic Technology Group
DTU Acoustic Technology Group
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023