Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Overview

Introduction

Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning".

We construct a new large-scale benchmark, Geometry3K, which consists of 3,002 geometry problems with dense annotation in formal language. We define 91 predicates and their corresponding literal templates to describe each problem. All predicates are defined in here. Four data examples in the Geometry3K dataset are shown below:

example

We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS is the first geometry problem solver that achieves automatic program parsing and interpretable symbolic reasoning. Inter-GPS parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Moreover, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.

model

Prepare the Dataset

First, unzip data files into data/geometry3k:

. data/unzip_data.sh

You can alternatively visit the Google Drive link to download the Geometry dataset and unzip it.

Requirements

Python 3.6+
torch 1.7.1
transformers 4.8.2
python3-pip

Install all required python dependencies:

pip3 install -r requirement.txt

Run Inter-GPS Directly

The Final Search Strategy

Run the final symbolic solver Inter-GPS without preprocessing data by the following commands:

cd symbolic_solver
python test.py --label final --strategy final

It applies the final search strategy (predict + low-first) with generated logic forms from the diagram parser and text parser. The solving result file and logging file will be saved in pred_results and logs, respectively.

It takes about 5 minutes for the solving process over the 601 test problems with an Intel CPU 10900K with 20 threads. If you don't have a high-performance CPU, please assign a smaller number of threads and larger searching time limit for each problem. For example:

python test.py --label final --strategy final --time_limit 200 --num_threads 4

Run the symbolic solver with annotated logic forms from the dataset:

python test.py --label final-gt --strategy final --use_annotated

Note that the results could differ slightly in each individual experiment and on different computing platforms. The differences are mainly resulted from randomness of the search process, dependency versions, CPU features, and running parameters. It is highly recommended to run the solver with multiple times and report the average result of the multiple experiments.

Other Search Strategies

Also, you can run the solver with other search strategies listed in Table 7 in the paper by running the following commands, receptively:

  • Predict-based search strategy (predict + random) with annotated logic forms:
python test.py --label predict --strategy predict --use_annotated
  • Random search strategy with annotated logic forms:
python test.py --label random --strategy random --use_annotated
  • Low-first search strategy with annotated logic forms:
python test.py --label low-first --strategy low-first --use_annotated

All these result files reported in the Table 7 are released in symbolic_solver/pred_results and symbolic_solver/logs, respectively.

Calculate Accuracies

You can obtain accuracies for different question types by running python sub_acc.py --result_file {result_json_file} . For example:

python sub_acc.py --result_file pred_results/final/logic_1612098244-predict_low-first_1.json

Run Inter-GPS from Scratch

Text Parser

Parse the problem text into literals (logic forms).

cd text_parser
python text_parser.py

Diagram Parser

The diagram parser converts a problem diagram into literals (logic forms). Only the most core running code is shown as following. If you would like to know every detail, please refer to this README file.

Unzip our detection results of text regions and symbols:

cd detection_results
unzip -d box_results box_results.zip
unzip -d ocr_results ocr_results.zip

Generate diagram logic forms by running the following command:

cd parser
python diagram_parser.py \
--data_path ../../data/geometry3k \
--ocr_path ../detection_results/ocr_results \
--box_path ../detection_results/box_results \
--output_path ../diagram_logic_forms.json

Theorem Predictor

  1. Generate template-based and random-ordered theorem sequences:
cd theorem_predict/tools
python generate_random_seqs.py

It generates two files:

  • results/train/pred_seqs_train_l30_n100_template.json: 100 template-based sequences with a maximum length of 30 for each training data
  • results/test/pred_seqs_test_l100_random.json: 1 random-order sequence with a maximum length of 100 for each testing data
  1. (Optional) Generate pseudo-optimal theorem sequences for each training data:
python check_theorem_seq.py

It will take about 20 hours to attempt 100 tries over all training data! If you want to save time, just skip this step and use our generated data in theorem_predict/results/train/splits instead.

  1. (Optional) Merge 100 tries of pseudo-optimal theorem sequences into one file.
python merge_all_correct_json.py
  1. (Optional) Train the theorem predictor from scratch:
python train_transformer.py

If you want save time, you could skip the step above and download checkpoint model directly:

cd theorem_predict/models
wget https://acl2021-intergps.s3.us-west-1.amazonaws.com/tp_model_best.pt
  1. Evaluate the the theorem predictor to generate predicted theorem sequences:
cd theorem_predict
python eval_transformer.py
  1. Generate theorem sequences for the predict-based strategy (predict + random):
cd theorem_predict/tools
python add_random_seq_to_pred_seq.py

Symbolic Solver

Finally, run the symbolic solver with the Final search strategy (predict + low-first) over generated logic forms:

cd symbolic_solver
python test.py --label final_new \
--strategy final \
--text_logic_form_path ../text_parser/text_logic_forms.json \
--diagram_logic_form_path ../diagram_parser/diagram_logic_forms.json \
--predict_path ../theorem_predict/results/test/pred_seqs_test_bart_best.json

Data Annotation Tools

We release the data collection tools that probably help you extend our dataset in the future work.

Data Collection

The data collection tool is used to collect geometry problems and the corresponding logical forms.

cd annotation_tool/data_collection
python app.py

labelImg

Symbol Labeling

LabelImg is a graphical image annotation tool and label object bounding boxes in images. We use this tool to label text regions and symbols in the diagram. If you are using the Linux system, you can just run the following commands to install the tool:

cd annotation_tool/labelImg
sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3

Run the labeling tool:

python labelImg.py

After running the tool, click the Open Dir button to open the data directory containing problem images, for example, InterGPS/data/geometry3k/symbols, and choose Use default label to use pre-defined labels in data/predefined_classes.txt. Note that pre-defined labels in data/predefined_classes.txt are consistent with labels in diagram_parser/detection/classes.txt.

labelImg

Follow the instructions to install the LabelImg package on other systems or learn more about the usage details.

Citation

If the paper, the dataset, or the code helps you, please cite the paper in the following format :

@inproceedings{lu2021inter,
  title = {Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning},
  author = {Lu, Pan and Gong, Ran and Jiang, Shibiao and Qiu, Liang and Huang, Siyuan and Liang, Xiaodan and Zhu, Song-Chun},
  booktitle = {The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)},
  year = {2021}
}

Q&A

If you encounter any problem, feel free to either directly contact the first authors or leave an issue in the github repo.

Comments
  • Sharing Training Details

    Sharing Training Details

    Hi Pan,

    Your paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning" is awesome.

    However, when reproducing results of this work, I have one problem. I trained the symbol detection model with the data you provided, but the model could not perform as well as the box_result you released. Could you please share more training details?

    Thank you very much and looking forward to your reply.

    opened by YusenZhang826 3
  • DataSet Generation

    DataSet Generation

    Hi Pan, Loved your work in InterGPS. We were planning to extend the dataset, using the annotation tools shared. We wanted to know in logic_form.json for each question (Ground Truth), how was point positions added was this done manually or using some subroutine? Thanks, Akshat

    opened by Akshat188 1
  • Providing a pretrained object detection model for text and symbols

    Providing a pretrained object detection model for text and symbols

    Hello, Thanks for your work! Could you please provide a pretrained object detection model, e.g. the one mentioned in the documentation here: models/exp0/csv_retinanet_19.pt?

    Thank you in advance :)

    opened by supitalp 1
  • About datasets

    About datasets

    Hello, how can I expand the data set of Geometry3K? Where the math geometry problems of Geometry3K come from? Could you please provide more specific web links or other information? Thank you very much!

    opened by mingliangzhang2018 1
  • About the file of  “diagram_logic_forms_pred.json”

    About the file of “diagram_logic_forms_pred.json”

    Excuse me, could you tell me about whether the content of file “diagram_logic_forms_pred.json" is the predicted results of your diagram parser? Thanks every much!

    opened by mingliangzhang2018 1
  • Poor performance of theorem predictor

    Poor performance of theorem predictor

    Hello, Pan. Thank you for your open source.

    I download checkpoint model from https://acl2021-intergps.s3.us-west-1.amazonaws.com/tp_model_best.pt But the evaluation results are empty. How can I get it back to normal? Thanks.

    image

    opened by ICanFlyGFC 9
Releases(Latest)
Owner
Pan Lu
Computer Science
Pan Lu
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022