Code release of paper "Deep Multi-View Stereo gone wild"

Overview

Deep MVS gone wild

Pytorch implementation of "Deep MVS gone wild" (Paper | website)

This repository provides the code to reproduce the experiments of the paper. It implements extensive comparison of Deep MVS architecture, training data and supervision.

If you find this repository useful for your research, please consider citing

@article{
  author    = {Darmon, Fran{\c{c}}ois  and
               Bascle, B{\'{e}}n{\'{e}}dicte  and
               Devaux, Jean{-}Cl{\'{e}}ment  and
               Monasse, Pascal  and
               Aubry, Mathieu},
  title     = {Deep Multi-View Stereo gone wild},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.15119},
}

Installation

  • Python packages: see requirements.txt

  • Fusibile:

git clone https://github.com/YoYo000/fusibile 
cd fusibile
cmake .
make .
ln -s EXE ./fusibile
  • COLMAP: see the github repository for installation details then link colmap executable with ln -s COLMAP_DIR/build/src/exe/colmap colmap

Training

You may find all the pretrained models here (120 Mo) or alternatively you can train models using the following instructions.

Data

Download the following data and extract to folder datasets

The directory structure should be as follow:

datasets
├─ blended
├─ dtu_train
├─ MegaDepth_v1
├─ undistorted_md_geometry

The data is already preprocessed for DTU and BlendedMVS. For MegaDepth, run python preprocess.py for generating the training data.

Script

The training script is train.py, launch python train.py --help for all the options. For example

  • python train.py --architecture vis_mvsnet --dataset md --supervised --logdir best_sup --world_size 4 --batch_size 4 for training the best performing setup for images in the wild.
  • python train.py --architecture mvsnet-s --dataset md --unsupervised --upsample --occ_masking --epochs 5 --lrepochs 4:10 --logdir best_unsup --world_size 3 for the best unsupervised model.

The models are saved in folder trained_models

Evaluations

We provide code for both depthmap evaluation and 3D reconstruction evaluation

Data

Download the following links and extract them to datasets

  • BlendedMVS (27.5 GB) same link as BlendedMVS training data

  • YFCC depth maps (1.1Go)

  • DTU MVS benchmark: Create directory datasets/dtu_eval and extract the following files

    In the end the folder structure should be

    datasets
    ├─ dtu_eval
        ├─ ObsMask
        ├─ images
        ├─ Points
            ├─ stl
    
  • YFCC 3D reconstruction (1.5Go)

Depthmap evaluation

python depthmap_eval.py --model MODEL --dataset DATA

  • MODEL is the name of a folder found in trained_models
  • DATA is the evaluation dataset, either yfcc or blended

3D reconstruction

See python reconstruction_pipeline.py --help for a complete list of parameters for 3D reconstruction. For running the whole evaluation for a trained model with the parameters used in the paper, run

  • scripts/eval3d_dtu.sh --model MODEL (--compute_metrics) for DTU evaluation
  • scripts/eval3d_yfcc.sh --model MODEL (--compute_metrics) for YFCC 3D evaluation

The reconstruction will be located in datasets/dtu_eval/Points or datasets/yfcc_data/Points

Acknowledgments

This repository is inspired by MVSNet_pytorch and MVSNet repositories. We also adapt the official implementations of Vis_MVSNet and CVP_MVSNet.

Copyright

Deep MVS Gone Wild All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022