Code release of paper "Deep Multi-View Stereo gone wild"

Overview

Deep MVS gone wild

Pytorch implementation of "Deep MVS gone wild" (Paper | website)

This repository provides the code to reproduce the experiments of the paper. It implements extensive comparison of Deep MVS architecture, training data and supervision.

If you find this repository useful for your research, please consider citing

@article{
  author    = {Darmon, Fran{\c{c}}ois  and
               Bascle, B{\'{e}}n{\'{e}}dicte  and
               Devaux, Jean{-}Cl{\'{e}}ment  and
               Monasse, Pascal  and
               Aubry, Mathieu},
  title     = {Deep Multi-View Stereo gone wild},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.15119},
}

Installation

  • Python packages: see requirements.txt

  • Fusibile:

git clone https://github.com/YoYo000/fusibile 
cd fusibile
cmake .
make .
ln -s EXE ./fusibile
  • COLMAP: see the github repository for installation details then link colmap executable with ln -s COLMAP_DIR/build/src/exe/colmap colmap

Training

You may find all the pretrained models here (120 Mo) or alternatively you can train models using the following instructions.

Data

Download the following data and extract to folder datasets

The directory structure should be as follow:

datasets
├─ blended
├─ dtu_train
├─ MegaDepth_v1
├─ undistorted_md_geometry

The data is already preprocessed for DTU and BlendedMVS. For MegaDepth, run python preprocess.py for generating the training data.

Script

The training script is train.py, launch python train.py --help for all the options. For example

  • python train.py --architecture vis_mvsnet --dataset md --supervised --logdir best_sup --world_size 4 --batch_size 4 for training the best performing setup for images in the wild.
  • python train.py --architecture mvsnet-s --dataset md --unsupervised --upsample --occ_masking --epochs 5 --lrepochs 4:10 --logdir best_unsup --world_size 3 for the best unsupervised model.

The models are saved in folder trained_models

Evaluations

We provide code for both depthmap evaluation and 3D reconstruction evaluation

Data

Download the following links and extract them to datasets

  • BlendedMVS (27.5 GB) same link as BlendedMVS training data

  • YFCC depth maps (1.1Go)

  • DTU MVS benchmark: Create directory datasets/dtu_eval and extract the following files

    In the end the folder structure should be

    datasets
    ├─ dtu_eval
        ├─ ObsMask
        ├─ images
        ├─ Points
            ├─ stl
    
  • YFCC 3D reconstruction (1.5Go)

Depthmap evaluation

python depthmap_eval.py --model MODEL --dataset DATA

  • MODEL is the name of a folder found in trained_models
  • DATA is the evaluation dataset, either yfcc or blended

3D reconstruction

See python reconstruction_pipeline.py --help for a complete list of parameters for 3D reconstruction. For running the whole evaluation for a trained model with the parameters used in the paper, run

  • scripts/eval3d_dtu.sh --model MODEL (--compute_metrics) for DTU evaluation
  • scripts/eval3d_yfcc.sh --model MODEL (--compute_metrics) for YFCC 3D evaluation

The reconstruction will be located in datasets/dtu_eval/Points or datasets/yfcc_data/Points

Acknowledgments

This repository is inspired by MVSNet_pytorch and MVSNet repositories. We also adapt the official implementations of Vis_MVSNet and CVP_MVSNet.

Copyright

Deep MVS Gone Wild All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022