KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

Overview

KoRean based ELECTRA (KR-ELECTRA)

This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computational Linguistics Lab at Seoul National University. Our model shows remarkable performances on tasks related to informal texts such as review documents, while still showing comparable results on other kinds of tasks.

Released Model

We pre-trained our KR-ELECTRA model following a base-scale model of ELECTRA. We trained the model based on Tensorflow-v1 using a v3-8 TPU of Google Cloud Platform.

Model Details

We followed the training parameters of the base-scale model of ELECTRA.

Hyperparameters
model # of layers embedding size hidden size # of heads
Discriminator 12 768 768 12
Generator 12 768 256 4
Pretraining
batch size train steps learning rates max sequence length generator size
256 700000 2e-4 128 0.33333

Training Dataset

34GB Korean texts including Wikipedia documents, news articles, legal texts, news comments, product reviews, and so on. These texts are balanced, consisting of the same ratios of written and spoken data.

Vocabulary

vocab size 30,000

We used morpheme-based unit tokens for our vocabulary based on the Mecab-Ko morpheme analyzer.

Download Link

  • Tensorflow-v1 model (download)

  • PyTorch models on HuggingFace

from transformers import ElectraModel, ElectraTokenizer

model = ElectraModel.from_pretrained("snunlp/KR-ELECTRA-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("snunlp/KR-ELECTRA-discriminator")

Finetuning

We used and slightly edited the finetuning codes from KoELECTRA, with additionally adjusted hyperparameters. You can download the codes and config files that we used for our model.

python3 run_seq_cls.py --task nsmc --config_file kr-electra.json
python3 run_seq_cls.py --task kornli --config_file kr-electra.json
python3 run_seq_cls.py --task paws --config_file kr-electra.json
python3 run_seq_cls.py --task question-pair --config_file kr-electra.json
python3 run_seq_cls.py --task korsts --config_file kr-electra.json
python3 run_seq_cls.py --task korsts --config_file kr-electra.json
python3 run_ner.py --task naver-ner --config_file kr-electra.json
python3 run_squad.py --task korquad --config_file kr-electra.json

Experimental Results

NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
KorQuaD (Dev)
(EM/F1)
Korean-Hate-Speech (Dev)
(F1)
KoBERT 89.59 87.92 81.25 79.62 81.59 94.85 51.75 / 79.15 66.21
XLM-Roberta-Base 89.03 86.65 82.80 80.23 78.45 93.80 64.70 / 88.94 64.06
HanBERT 90.06 87.70 82.95 80.32 82.73 94.72 78.74 / 92.02 68.32
KoELECTRA-Base 90.33 87.18 81.70 80.64 82.00 93.54 60.86 / 89.28 66.09
KoELECTRA-Base-v2 89.56 87.16 80.70 80.72 82.30 94.85 84.01 / 92.40 67.45
KoELECTRA-Base-v3 90.63 88.11 84.45 82.24 85.53 95.25 84.83 / 93.45 67.61
KR-ELECTRA (ours) 91.168 87.90 82.05 82.51 85.41 95.51 84.93 / 93.04 74.50

The baseline results are brought from KoELECTRA's.

Citation

@misc{kr-electra,
  author = {Lee, Sangah and Hyopil Shin},
  title = {KR-ELECTRA: a KoRean-based ELECTRA model},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/snunlp/KR-ELECTRA}}
}
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022