Evaluation suite for large-scale language models.

Overview

LM Evaluation Test Suite

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 Studio API and OpenAI's GPT3 API.

Citation

Please use the following bibtex entry:

@techreport{J1WhitePaper,
  author = {Lieber, Opher and Sharir, Or and Lenz, Barak and Shoham, Yoav},
  title = {Jurassic-1: Technical Details And Evaluation},
  institution = {AI21 Labs},
  year = 2021,
  month = aug,
}

Installation

git clone https://github.com/AI21Labs/lm-evaluation.git
cd lm-evaluation
pip install -e .

Usage

The entry point for running the evaluations is lm_evaluation/run_eval.py, which receives a list of tasks and models to run.

The models argument should be in the form "provider/model_name" where provider can be "ai21" or "openai" and the model name is one of the providers supported models.

When running through one of the API models, set the your API key(s) using the environment variables AI21_STUDIO_API_KEY and OPENAI_API_KEY. Make sure to consider the costs and quota limits of the models you are running beforehand.

Examples:

# Evaluate hellaswag and winogrande on j1-large
python -m lm_evaluation.run_eval --tasks hellaswag winogrande --models ai21/j1-large

# Evaluate all multiple-choice tasks on j1-jumbo
python -m lm_evaluation.run_eval --tasks all_mc --models ai21/j1-jumbo

# Evaluate all docprob tasks on curie and j1-large
python -m lm_evaluation.run_eval --tasks all_docprobs --models ai21/j1-large openai/curie

Datasets

The repo currently support the zero-shot multiple-choice and document probability datasets reported in the Jurassic-1 Technical Paper.

Multiple Choice

Multiple choice datasets are formatted as described in the GPT3 paper, and the default reported evaluation metrics are those described there.

All our formatted datasets except for storycloze are publically available and referenced in lm_evaluation/tasks_config.py. Storycloze needs to be manually downloaded and formatted, and the location should be configured through the environment variable 'STORYCLOZE_TEST_PATH'.

Document Probabilities

Document probability tasks include documents from 19 data sources, including C4 and datasets from 'The Pile'.

Each document is pre-split at sentence boundaries to sub-documents of up to 1024 GPT tokens each, to ensure all models see the same inputs/contexts regardless of tokenization, and to support evaluation of models which are limited to sequence lengths of 1024.

Each of the 19 tasks have ~4MB of total text data.

Additional Configuration

Results Folder

By default all results will be saved to the folder 'results', and rerunning the same tasks will load the existing results. The results folder can be changed using the environment variable LM_EVALUATION_RESULTS_DIR.

OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

πŸ“– Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) πŸ”₯ If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

εˆ˜ε½¦θΆ… 34 Nov 30, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022