The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

Related tags

Deep LearningD-REX
Overview

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

How do I cite D-REX?

For now, cite the Arxiv paper

@article{albalak2021drex,
      title={D-REX: Dialogue Relation Extraction with Explanations}, 
      author={Alon Albalak and Varun Embar and Yi-Lin Tuan and Lise Getoor and William Yang Wang},
      journal={arXiv preprint arXiv:2109.05126},
      year={2021},
}

To train the full system:

GPU=0
bash train_drex_system.sh $GPU

Notes:

  • The training script is set up to work with an NVIDIA Titan RTX (24Gb memory, mixed-precision)
  • To train on a GPU with less memory, adjust the GPU_BATCH_SIZE parameter in train_drex_system.sh to match your memory limit.
  • Training the full system takes ~24 hours on a single NVIDIA Titan RTX

To test the trained system:

GPU=0
bash test_drex_system.sh $GPU

To train/test individual modules:

  • Relation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=relation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --relation_extraction_pretraining \
          > $MODEL_PATH/train_outputs.log
    • Testing:
      GPU=0
      MODEL_PATH=relation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      THRESHOLD1=$(echo $BEST_MODEL | grep -o "T1.....")
      THRESHOLD1=${THRESHOLD1: -2}
      THRESHOLD2=$(echo $BEST_MODEL | grep -o "T2.....")
      THRESHOLD2=${THRESHOLD2: -2}
      CUDA_VISIBLE_DEVICES=0 python3 test_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --relation_extraction_pretraining \
          --threshold1=$THRESHOLD1 \
          --threshold2=$THRESHOLD2 \
          --data_split=test
  • Explanation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --explanation_policy_pretraining \
          > $MODEL_PATH/train_outputs.log    
    • Testing:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      CUDA_VISIBLE_DEVICES=$GPU python3 test_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --explanation_policy_pretraining \
          --data_split=test
Owner
Alon Albalak
Alon Albalak
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022