The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Related tags

Deep LearningDisDis
Overview

Personalized Trajectory Prediction via Distribution Discrimination (DisDis)

The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021,arxiv.

Introduction

The motivation of DisDis is to learn the latent distribution to represent different motion patterns, where the motion pattern of each person is personalized due to his/her habit. We learn the distribution discriminator in a self-supervised manner, which encourages the latent variable distributions of the same motion pattern to be similar while pushing the ones of the different motion patterns away. DisDis is a plug-and-play module which could be integrated with existing multi-modal stochastic predictive models to enhance the discriminative ability of latent distribution. Besides, we propose a new evaluation metric for stochastic trajectory prediction methods. We calculate the probability cumulative minimum distance (PCMD) curve to comprehensively and stably evaluate the learned model and latent distribution, which cumulatively selects the minimum distance between sampled trajectories and ground-truth trajectories from high probability to low probability. PCMD considers the predictions with corresponding probabilities and evaluates the prediction model under the whole latent distribution.

image Figure 1. Training process for the DisDis method. DisDis regards the latent distribution as the motion pattern and optimizes the trajectories with the same motion pattern to be close while the ones with different patterns are pushed away, where the same latent distributions are in the same color. For a given history trajectory, DisDis predicts a latent distribution as the motion pattern, and takes the latent distribution as the discrimination to jointly optimize the embeddings of trajectories and latent distributions.

Requirements

  • Python 3.6+
  • PyTorch 1.4

To build all the dependency, you can follow the instruction below.

pip install -r requirements.txt

Our code is based on Trajectron++. Please cite it if it's useful.

Dataset

The preprocessed data splits for the ETH and UCY datasets are in experiments/pedestrians/raw/. Before training and evaluation, execute the following to process the data. This will generate .pkl files in experiments/processed.

cd experiments/pedestrians
python process_data.py

The train/validation/test/ splits are the same as those found in Social GAN.

Model training

You can train the model for zara1 dataset as

python train.py --eval_every 10 --vis_every 1 --train_data_dict zara1_train.pkl --eval_data_dict zara1_val.pkl --offline_scene_graph yes --preprocess_workers 2 --log_dir ../experiments/pedestrians/models --log_tag _zara1_disdis --train_epochs 100 --augment --conf ../experiments/pedestrians/models/config/config_zara1.json --device cuda:0

The pre-trained models can be found in experiments/pedestrians/models/. And the model configuration is in experiments/pedestrians/models/config/.

Model evaluation

To reproduce the PCMD results in Table 1, you can use

python evaluate_pcmd.py --node_type PEDESTRIAN --data ../processed/zara1_test.pkl --model models/zara1_pretrain --checkpoint 100

To use the most-likely strategy, you can use

python evaluate_mostlikely_z.py --node_type PEDESTRIAN --data ../processed/zara1_test.pkl --model models/zara1_pretrain --checkpoint 100

Welcome to use our PCMD evaluation metric in your experiments. It is a more comprehensive and stable evaluation metric for stochastic trajectory prediction methods.

Citation

The bibtex of our paper 'Personalized Trajectory Prediction via Distribution Discrimination' is provided below:

@inproceedings{Disdis,
  title={Personalized Trajectory Prediction via Distribution Discrimination},
  author={Chen, Guangyi and Li, Junlong and Zhou, Nuoxing and Ren, Liangliang and Lu, Jiwen},
  booktitle={ICCV},
  year={2021}
}
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022