Provide baselines and evaluation metrics of the task: traffic flow prediction

Overview

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction.

Due to technical reasons, I did not fork their code.

Introduction

This repo provide the implementations of baselines in the field traffic flow prediction. Most of the code in this field is too out-of-date to run, so I use docker to save you from installing tedious frameworks and provide one-line command to run the whole models. Before running, make sure copy TaxiBJ dataset to the data folder. Check Out QuickStart, where I provide out-of-the-box tutorial for you to use this repo!

Install tedious frameworks with few lines of code

git clone https://github.com/pengzhangzhi/Benchmark-Traffic-flow-prediction-.git
cd Benchmark-Traffic-flow-prediction-
docker pull tensorflow/tensorflow:2.4.3-gpu
docker run -it tensorflow/tensorflow:2.4.3-gpu
pip install -r requirements.txt

Run Baselines

bash train_TaxiBJ.sh
bash train_TaxiNYC.sh

Repository structure

Each of the main folders is dedicated to a specific deep learning network. Some of them were taken and modified from other repositories associated with the source paper, while others are our original implementations. Here it is an exhaustive list:

  • ST-ResNet. Folder for [1]. The original source code is here.
  • MST3D. Folder with our original implementation of the model described in [2].
  • Pred-CNN. Folder for [3]. The original repository is here.
  • ST3DNet. Folder for [4]. The starting-point code can be found here.
  • STAR. Folder for [5]. Soure code was taken from here.
  • 3D-CLoST. Folder dedicated to a model created during another research at Università Bicocca.
  • STDN. Folder referring to [6]. This folder is actually a copy of this repository, since it was never used in our experimentes.
  • Autoencoder. Refer to paper: Listening to the city, attentively: A Spatio-TemporalAttention Boosted Autoencoder for the Short-Term Flow Prediction Problem.

The contents of these folders can be a little different from each other, accordingly to the structure of the source repositories. Nevertheless, in each of them there are all the codes used to create input flow volumes, training and testing the models for single step prediction, and to evaluate performance on multi step prediction and transfer learning experiments.

The remaining folders are:

  • baselines. Contains the code implementing Historical Average and ARIMA approaches to the traffic flow prediction problem.
  • data. Folder where source data should be put in.
  • helpers. Contains some helpers code used for data visualization or to get weather info through an external API.

References

[1] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.

[2] Chen, Cen, et al. "Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction." 2018 IEEE international conference on data mining (ICDM). IEEE, 2018.

[3] Xu, Ziru, et al. "PredCNN: Predictive Learning with Cascade Convolutions." IJCAI. 2018.

[4] Guo, Shengnan, et al. "Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting." IEEE Transactions on Intelligent Transportation Systems 20.10 (2019): 3913-3926.

[5] Wang, Hongnian, and Han Su. "STAR: A concise deep learning framework for citywide human mobility prediction." 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019.

[6] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

[7] Liu, Yang, et al. "Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction." IEEE Transactions on Intelligent Transportation Systems 21.11 (2019): 4798-4807.

[8] Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). 2018.

Owner
Zhangzhi Peng
On the way of science :-)
Zhangzhi Peng
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022