Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

Overview

LiDAR fog simulation

PWC

Created by Martin Hahner at the Computer Vision Lab of ETH Zurich.

This is the official code release of the paper
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
by Martin Hahner, Christos Sakaridis, Dengxin Dai, and Luc van Gool, accepted at ICCV 2021.

Please visit our paper website for more details.

pointcloud_viewer

Overview

.
├── file_lists                          # contains file lists for pointcloud_viewer.py
│   └── ...
├── integral_lookup_tables              # contains lookup tables to speed up the fog simulation
│   └── ... 
├── extract_fog.py                      # to extract real fog noise* from the SeeingThroughFog dataset
├── fog_simulation.py                   # to augment a clear weather pointcloud with artificial fog (used during training)
├── generate_integral_lookup_table.py   # to precompute the integral inside the fog equation
├── pointcloud_viewer.py                # to visualize entire point clouds of different datasets with the option to augment fog into their scenes
├── README.md
└── theory.py                           # to visualize the theory behind a single LiDAR beam in foggy conditions

* Contains returns not only from fog, but also from physical objects that are closeby.

Datasets supported by pointcloud_viewer.py:

License

This software is made available for non-commercial use under a Creative Commons License.
A summary of the license can be found here.

Acknowledgments

This work is supported by Toyota via the TRACE project.

Furthermore, we would like to thank the authors of SeeingThroughFog for their great work.
In this repository, we use a fork of their original repository to visualize annotations and compare to their fog simulation. Their code is licensed via the MIT License.

Citation

If you find this work useful, please consider citing our paper.

@inproceedings{HahnerICCV21,
  author = {Hahner, Martin and Sakaridis, Christos and Dai, Dengxin and Van Gool, Luc},
  title = {Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather},
  booktitle = {IEEE International Conference on Computer Vision (ICCV)},
  year = {2021},
}

Getting Started

Setup

  1. Install anaconda.

  2. Create a new conda environment.

conda create --name foggy_lidar python=3.9 -y
  1. Activate the newly created conda environment.
conda activate foggy_lidar
  1. Install all necessary packages.
conda install matplotlib numpy opencv pandas plyfile pyopengl pyqt pyqtgraph quaternion scipy tqdm -c conda-forge -y
pip install pyquaternion
  1. Clone this repository (including submodules).
git clone [email protected]:MartinHahner/LiDAR_fog_sim.git --recursive
cd LiDAR_fog_sim

Usage

How to run the script that visualizes the theory behind a single LiDAR beam in foggy conditions:

python theory.py

theory

How to run the script that visualizes entire point clouds of different datasets:

python pointcloud_viewer.py -d <path_to_where_you_store_your_datasets>

Note:

You may also have to adjust the relative paths in pointcloud_viewer.py (right at the beginning of the file) to be compatible with your datasets relative folder structure.

Disclaimer

The code has been successfully tested on

  • Ubuntu 18.04.5 LTS
  • macOS Big Sur 11.2.1
  • Debian GNU/Linux 9.13

using conda 4.9.2.

Contributions

Please feel free to suggest improvements to this repository.
We are always open to merge usefull pull request.

HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022