Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Overview

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

YOLOv5 with alpha-IoU losses implemented in PyTorch.

Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5) and fewer false positive objects (image 6 and 7).

Example results on the val set of MS COCO 2017 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer false positive objects (image 4 to 7). Note that image 4 and 5 detect both more true positive and fewer false positive objects.

Citation

If you use our method, please consider citing:

@inproceedings{Jiabo_Alpha-IoU,
  author    = {He, Jiabo and Erfani, Sarah and Ma, Xingjun and Bailey, James and Chi, Ying and Hua, Xian-Sheng},
  title     = {Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression},
  booktitle = {NeurIPS},
  year      = {2021},
}

Modifications

This repository is a fork of ultralytics/yolov5, with an implementation of alpha-IoU losses while keeping the code as close to the original as possible.

Alpha-IoU Losses

Alpha-IoU losses can be configured in Line 131 of utils/loss.py, functionesd as 'bbox_alpha_iou'. The alpha values and types of losses (e.g., IoU, GIoU, DIoU, CIoU) can be selected in this function, which are defined in utils/general.py. Note that we should use a small constant epsilon to avoid torch.pow(0, alpha) or denominator=0.

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Jacobi93/Alpha-IoU
$ cd Alpha-IoU
$ pip install -r requirements.txt

Configurations

Configuration files can be found in data. We do not change either 'voc.yaml' or 'coco.yaml' used in the original repository. However, we could do more experiments. E.g.,

voc25.yaml # randomly use 25% PASCAL VOC as the training set
voc50.yaml # randomly use 50% PASCAL VOC as the training set

Code for generating different small training sets is in generate_small_sets.py. Code for generating different noisy labels is in generate_noisy_labels.py, and we should change the 'img2label_paths' function in utils/datasets.py accordingly.

Implementation Commands

For detailed installation instruction and network training options, please take a look at the README file or issue of ultralytics/yolov5. Following are sample commands we used for training and testing YOLOv5 with alpha-IoU, with more samples in instruction.txt.

python train.py --data voc.yaml --hyp hyp.scratch.yaml --cfg yolov5s.yaml --batch-size 64 --epochs 300 --device '0'
python test.py --data voc.yaml --img 640 --conf 0.001 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --device '0'
python detect.py --source ../VOC/images/detect500 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --conf 0.25

We can also randomly generate some images for detection and visualization results in generate_detect_images.py.

Pretrained Weights

Here are some pretrained models using the configurations in this repository, with alpha=3 in all experiments. Details of these pretrained models can be found in runs/train. All results are tested using 'weights/best.pt' for each experiment. It is a very simple yet effective method so that people is able to quickly apply our method to existing models following the 'bbox_alpha_iou' function in utils/general.py. Note that YOLOv5 has been updated for many versions and all pretrained models in this repository are obtained based on the YOLOv5 version 4.0, where details of all versions for YOLOv5 can be found. Researchers are also welcome to apply our method to other object detection models, e.g., Faster R-CNN, DETR, etc.

Owner
Jacobi(Jiabo He)
Jacobi(Jiabo He)
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022