Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

Overview

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation

Code in conjunction with the publication: Contrastive Representation Learning for Hand Shape Estimation.

This repository contains code for inference of both networks: The one obtained from self-supervised contrastive pre-training and the network trained supervisedly for hand pose estimation. Additionally, we provide examples how to work with the HanCo dataset and release the pytorch Dataset that was used during our pre-training experiments. This dataset is an extension of the FreiHand dataset.

Visit our project page for additional information.

Requirements

Python environment

conda create -n contra-hand python=3.6
conda activate contra-hand
conda install -c pytorch pytorch=1.6.0 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore fvcore transforms3d
pip install pytorch3d transforms3d tqdm pytorch-lightning imgaug open3d matplotlib
pip install git+https://github.com/hassony2/chumpy.git

Hand Pose Dataset

You either need the full HanCo dataset or the small tester data sample (recommended).

Random Background Images

As the hand pose dataset contains green screen images, randomized backgrounds can be used. For our dataset we used 2195 images from Flickr. As these were not all licensed in a permissive manner, we provide a set of background images to use with the dataset. These can be found here.

MANO model

Our supervised training code uses the MANO Hand model, which you need to aquire seperately due to licensing regulations: https://mano.is.tue.mpg.de

In order for our code to work fine copy MANO_RIGHT.pkl from the MANO website to contra-hand/mano_models/MANO_RIGHT.pkl.

We also build on to of the great PyTorch implementation of MANO provided by Yana Hasson et al., which was modified by us and is already contained in this repository.

Trained models

We release both the MoCo pretrained model and the shape estimation network that was derived from it.

In order to get the trained models download and unpack them locally:

curl https://lmb.informatik.uni-freiburg.de/data/HanCo/contra-hand-ckpt.zip -o contra-hand-ckpt.zip & unzip contra-hand-ckpt.zip 

Code

This repository contains scripts that facilitate using the HanCo dataset and building on the results from our publication.

Show dataset

You will need to download the HanCo dataset (or at least the tester). This script gives you some examples on how to work with the dataset.

python show_dataset.py <Path-To-Your-Local-HanCo-Directory>

Use our MoCo trained model

There is a simple script that calculates the cosine similarity score for two hard coded examples:

python run_moco_fw.py

There is the script we used to create the respective figure in our paper.

python run_moco_qualitative_embedding.py

Self-Supervised Training with MoCo

We provide a torch data loader that can be used as a drop-in replacement for MoCo training. The data loader can be found here DatasetUnsupervisedMV.py. It has boolean options that control how the data is provided, these are cross_bg, cross_camera, and cross_time. The get_dataset function also shows the pre-processing that we use, which is slightly different from the standard MoCo pre-processing.

Use our MANO prediction model

The following script allows to run inference on an example image:

run_hand_shape_fw.py <Path-To-Your-Local-HanCo-Directory>
Owner
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
Pattern Recognition and Image Processing
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023