SpinalNet: Deep Neural Network with Gradual Input

Overview

SpinalNet: Deep Neural Network with Gradual Input

This repository contains scripts for training different variations of the SpinalNet and its counterparts.

Abstract

Over the past few years, deep neural networks (DNNs) have garnered remarkable success in a diverse range of real-world applications. However, DNNs consider a large number of inputs and consist of a large number of parameters, resulting in high computational demand. We study the human somatosensory system and propose the SpinalNet to achieve higher accuracy with less computational resources. In a typical neural network (NN) architecture, the hidden layers receive inputs in the first layer and then transfer the intermediate outcomes to the next layer. In the proposed SpinalNet, the structure of hidden layers allocates to three sectors: 1) Input row, 2) Intermediate row, and 3) output row. The intermediate row of the SpinalNet contains a few neurons. The role of input segmentation is in enabling each hidden layer to receive a part of the inputs and outputs of the previous layer. Therefore, the number of incoming weights in a hidden layer is significantly lower than traditional DNNs. As all layers of the SpinalNet directly contributes to the output row, the vanishing gradient problem does not exist. We also investigate the SpinalNet fully-connected layer to several well-known DNN models and perform traditional learning and transfer learning. We observe significant error reductions with lower computational costs in most of the DNNs. We have also obtained the state-of-the-art (SOTA) performance for QMNIST, Kuzushiji-MNIST, EMNIST (Letters, Digits, and Balanced), STL-10, Bird225, Fruits 360, and Caltech-101 datasets. The scripts of the proposed SpinalNet are available at the following link: https://github.com/dipuk0506/SpinalNet

Packages Used

torch, torchvision, numpy, random, matplotlib, time, os, copy, math.

Scripts are independent. The user can download an individual script and run. Except for scripts of the 'Transfer Learning' folder, scripts are downloading data from PyTorch during the execution.

SOTA

KMNIST, QMNINT, EMNIST (Digits, Letters, Balanced), STL-10, Bird-225, Caltech-101,Fruits-360

Motivation

The SpinalNet tries to mimic the human somatosensory system to receive large data efficiently and to achieve better performance. (a) Half part of the human somatosensory system, presenting how our spinal cord receives sensory signals from our body. (b) Structure of the proposed SpinalNet. The proposed NN consists of the input row, the intermediate row, and the output row. The intermediate row contains multiple hidden layers. Each hidden layer receives a portion of the input. All layers except the first layer also receive outputs of the previous layer. The output layer adds the weighted outputs of all hidden neurons of the intermediate row. The user can also construct and train a SpinalNet for any arbitrary number of inputs, intermediate neurons, and outputs.

Universal Approximation

  • Single hidden layer NN of large width is a universal approximator.

  • If we can prove that, SpinalNet of a large depth can be equivalent to the single hidden layer NN of large width, the universal approximation is proved.

Following figure presents the visual proof of the universal approximation theorem for the proposed SpinalNet. A simplified version of SpinalNet in (a) can act as a NN of a single hidden layer, drawn in (b). Similarly, a 4 layer SpinalNet in (d)can be equal to a NN of one hidden layer (HL), containing four neurons, shown in (c).

Traditional hidden layer to Spinal Hidden Layer

Any traditional hidden layer can be converted to a spinal hidden layer. The traditional hidden layer in (a) is converted to a spinal hidden layer in (b). A spinal hidden layer has the structure of the proposed SpinalNet.

Results

Regression

Classification

Detailed classification results are available in the paper. Link to the paper: https://arxiv.org/abs/2007.03347

Simulation results on Kaggle:

[1] https://www.kaggle.com/dipuk0506/spinalnet-tl-pytorch-bird225-99-5

[2] https://www.kaggle.com/dipuk0506/spinalnet-cifar10-97-5-accuracy

[3] https://www.kaggle.com/dipuk0506/spinalnet-fruit360-99-99-accuracy

Owner
H M Dipu Kabir
H M Dipu Kabir
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022