Perturb-and-max-product: Sampling and learning in discrete energy-based models

Overview

Perturb-and-max-product: Sampling and learning in discrete energy-based models

This repo contains code for reproducing the results in the paper Perturb-and-max-product: Sampling and learning in discrete energy-based models accepted at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Getting started

Dependencies can be installed via

pip install -r requirements.txt
python setup.py develop

By default this installs JAX for CPU. If you would like to use JAX with a GPU and specific CUDA version (highly recommended), follow the official instructions here.

Pmap

pmap is the main folder. It contains the following files:

  • mmd.py implements the maximum mean discrepancy metric.
  • small_ising_scoring.py contains useful functions for small tractable Ising models.
  • ising_modeling.py contains learning and sampling algorithms for Ising models using max-product and gibbs variants (in JAX).
  • ising_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • mplp.py implements the max-product linear programming algorithm for Ising models.
  • rbm_modeling.py contains learning and sampling algorithms for RBM models using max-product and gibbs variants (in JAX).
  • rbm_modeling_lp.py contains similar algorithms using Ecos LP solver.
  • conv_or_modeling.py and logical_mpmp.py contain sampling algorithms for the deconvolution experiments in Section 5.6.

Experiments

The experiments folder contains the python scripts used for all the experiments the paper.

The data required for all the experiments has to be generated first via

. experiments/generate_data.sh

and will be automatically stored in a data folder

  • Experiments for Section 5.1 are in exp1_wrongmodel.py.
  • Experiments for Section 5.2 are in exp2_mplp.py.
  • Experiments for Section 5.3 are in exp3_zeros_train.py and exp3_zeros_test.py.
  • Experiments for Section 5.4 are in exp4_c2d_lattice_persistent.py, exp4_c2d_lattice_non_persistent.py, exp_erdos_persistent.py andexp_erdos_non_persistent.py.
  • Experiments for Section 5.5 are in exp5_mnist_train.py, exp5_mnist_test.py and exp5_rbm_2s.py.
  • Experiments for Section 5.6 are in exp6_convor.py.

The results will be automatically stored in a results folder

Figures

The notebook all_paper_plots.ipynb displays all the figures of the main paper. The figures are saved in a paper folder.

Owner
Vicarious
Vicarious
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022