FMA: A Dataset For Music Analysis

Overview

FMA: A Dataset For Music Analysis

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson.
International Society for Music Information Retrieval Conference (ISMIR), 2017.

We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma.

Data

All metadata and features for all tracks are distributed in fma_metadata.zip (342 MiB). The below tables can be used with pandas or any other data analysis tool. See the paper or the usage.ipynb notebook for a description.

  • tracks.csv: per track metadata such as ID, title, artist, genres, tags and play counts, for all 106,574 tracks.
  • genres.csv: all 163 genres with name and parent (used to infer the genre hierarchy and top-level genres).
  • features.csv: common features extracted with librosa.
  • echonest.csv: audio features provided by Echonest (now Spotify) for a subset of 13,129 tracks.

Then, you got various sizes of MP3-encoded audio data:

  1. fma_small.zip: 8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)
  2. fma_medium.zip: 25,000 tracks of 30s, 16 unbalanced genres (22 GiB)
  3. fma_large.zip: 106,574 tracks of 30s, 161 unbalanced genres (93 GiB)
  4. fma_full.zip: 106,574 untrimmed tracks, 161 unbalanced genres (879 GiB)

See the wiki (or #41) for known issues (errata).

Code

The following notebooks, scripts, and modules have been developed for the dataset.

  1. usage.ipynb: shows how to load the datasets and develop, train, and test your own models with it.
  2. analysis.ipynb: exploration of the metadata, data, and features. Creates the figures used in the paper.
  3. baselines.ipynb: baseline models for genre recognition, both from audio and features.
  4. features.py: features extraction from the audio (used to create features.csv).
  5. webapi.ipynb: query the web API of the FMA. Can be used to update the dataset.
  6. creation.ipynb: creation of the dataset (used to create tracks.csv and genres.csv).
  7. creation.py: creation of the dataset (long-running data collection and processing).
  8. utils.py: helper functions and classes.

Usage

Binder   Click the binder badge to play with the code and data from your browser without installing anything.

  1. Clone the repository.

    git clone https://github.com/mdeff/fma.git
    cd fma
  2. Create a Python 3.6 environment.
    # with https://conda.io
    conda create -n fma python=3.6
    conda activate fma
    
    # with https://github.com/pyenv/pyenv
    pyenv install 3.6.0
    pyenv virtualenv 3.6.0 fma
    pyenv activate fma
    
    # with https://pipenv.pypa.io
    pipenv --python 3.6
    pipenv shell
    
    # with https://docs.python.org/3/tutorial/venv.html
    python3.6 -m venv ./env
    source ./env/bin/activate
  3. Install dependencies.

    pip install --upgrade pip setuptools wheel
    pip install numpy==1.12.1  # workaround resampy's bogus setup.py
    pip install -r requirements.txt

    Note: you may need to install ffmpeg or graphviz depending on your usage.
    Note: install CUDA to train neural networks on GPUs (see Tensorflow's instructions).

  4. Download some data, verify its integrity, and uncompress the archives.

    cd data
    
    curl -O https://os.unil.cloud.switch.ch/fma/fma_metadata.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_small.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_medium.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_large.zip
    curl -O https://os.unil.cloud.switch.ch/fma/fma_full.zip
    
    echo "f0df49ffe5f2a6008d7dc83c6915b31835dfe733  fma_metadata.zip" | sha1sum -c -
    echo "ade154f733639d52e35e32f5593efe5be76c6d70  fma_small.zip"    | sha1sum -c -
    echo "c67b69ea232021025fca9231fc1c7c1a063ab50b  fma_medium.zip"   | sha1sum -c -
    echo "497109f4dd721066b5ce5e5f250ec604dc78939e  fma_large.zip"    | sha1sum -c -
    echo "0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab  fma_full.zip"     | sha1sum -c -
    
    unzip fma_metadata.zip
    unzip fma_small.zip
    unzip fma_medium.zip
    unzip fma_large.zip
    unzip fma_full.zip
    
    cd ..

    Note: try 7zip if decompression errors. It might be an unsupported compression issue.

  5. Fill a .env configuration file (at repository's root) with the following content.

    AUDIO_DIR=./data/fma_small/  # the path to a decompressed fma_*.zip
    FMA_KEY=MYKEY  # only if you want to query the freemusicarchive.org API
    
  6. Open Jupyter or run a notebook.

    jupyter notebook
    make usage.ipynb

Impact, coverage, and resources

100+ research papers

Full list on Google Scholar. Some picks below.

2 derived works
~10 posts
5 events
~10 dataset lists

Contributing

Contribute by opening an issue or a pull request. Let this repository be a hub around the dataset!

History

2017-05-09 pre-publication release

  • paper: arXiv:1612.01840v2
  • code: git tag rc1
  • fma_metadata.zip sha1: f0df49ffe5f2a6008d7dc83c6915b31835dfe733
  • fma_small.zip sha1: ade154f733639d52e35e32f5593efe5be76c6d70
  • fma_medium.zip sha1: c67b69ea232021025fca9231fc1c7c1a063ab50b
  • fma_large.zip sha1: 497109f4dd721066b5ce5e5f250ec604dc78939e
  • fma_full.zip sha1: 0f0ace23fbe9ba30ecb7e95f763e435ea802b8ab
  • known issues: see #41

2016-12-06 beta release

  • paper: arXiv:1612.01840v1
  • code: git tag beta
  • fma_small.zip sha1: e731a5d56a5625f7b7f770923ee32922374e2cbf
  • fma_medium.zip sha1: fe23d6f2a400821ed1271ded6bcd530b7a8ea551

Acknowledgments and Licenses

We are grateful to the Swiss Data Science Center (EPFL and ETHZ) for hosting the dataset.

Please cite our work if you use our code or data.

@inproceedings{fma_dataset,
  title = {{FMA}: A Dataset for Music Analysis},
  author = {Defferrard, Micha\"el and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle = {18th International Society for Music Information Retrieval Conference (ISMIR)},
  year = {2017},
  archiveprefix = {arXiv},
  eprint = {1612.01840},
  url = {https://arxiv.org/abs/1612.01840},
}
@inproceedings{fma_challenge,
  title = {Learning to Recognize Musical Genre from Audio},
  subtitle = {Challenge Overview},
  author = {Defferrard, Micha\"el and Mohanty, Sharada P. and Carroll, Sean F. and Salath\'e, Marcel},
  booktitle = {The 2018 Web Conference Companion},
  year = {2018},
  publisher = {ACM Press},
  isbn = {9781450356404},
  doi = {10.1145/3184558.3192310},
  archiveprefix = {arXiv},
  eprint = {1803.05337},
  url = {https://arxiv.org/abs/1803.05337},
}
Owner
Michaël Defferrard
Research on machine learning and graphs. Open science, source, data.
Michaël Defferrard
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023