SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

Overview

SimDeblur

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It is easy to implement your own image or video deblurring or other restoration algorithms.

Major features

  • Modular Design

The toolbox decomposes the deblurring framework into different components and one can easily construct a customized restoration framework by combining different modules.

  • State of the art

The toolbox contains most deep-learning based state-of-the-art deblurring algorithms, including MSCNN, SRN, DeblurGAN, EDVR, etc.

  • Distributed Training

New Features

[2021/3/31] support DVD, GoPro and REDS video deblurring datasets. [2021/3/21] first release.

Surpported Methods and Benchmarks

Dependencies and Installation

  • Python 3 (Conda is recommended)
  • Pytorch 1.5.1 (with GPU)
  • CUDA 10.2+
  1. Clone the repositry or download the zip file
     git clone https://github.com/ljzycmd/SimDeblur.git
    
  2. Install SimDeblur
    # create a pytorch env
    conda create -n simdeblur python=3.7
    conda activate simdeblur   
    # install the packages
    cd SimDeblur
    bash Install.sh

Usage

1 Start with trainer

You can construct a simple training process use the default trainer like following:

from simdeblur.config import build_config, merge_args
from simdeblur.engine.parse_arguments import parse_arguments
from simdeblur.engine.trainer import Trainer


args = parse_arguments()

cfg = build_config(args.config_file)
cfg = merge_args(cfg, args)
cfg.args = args

trainer = Trainer(cfg)
trainer.train()

Then start training with single GPU:

CUDA_VISIBLE_DEVICES=0 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 1

multi GPU training:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 4

2 Build each module

The SimDeblur also provides you to build each module. build the a dataset:

from easydict import EasyDict as edict
from simdeblur.dataset import build_dataset

dataset = build_dataset(edict({
    "name": "DVD",
    "mode": "train",
    "sampling": "n_c",
    "overlapping": True,
    "interval": 1,
    "root_gt": "./dataset/DVD/quantitative_datasets",
    "num_frames": 5,
    "augmentation": {
        "RandomCrop": {
            "size": [256, 256] },
        "RandomHorizontalFlip": {
            "p": 0.5 },
        "RandomVerticalFlip": {
            "p": 0.5 },
        "RandomRotation90": {
            "p": 0.5 },
    }
}))

print(dataset[0])

build the model:

from simdeblur.model import build_backbone

model = build_backbone({
    "name": "DBN",
    "num_frames": 5,
    "in_channels": 3,
    "inner_channels": 64
})

x = torch.randn(1, 5, 3, 256, 256)
out = model(x)

build the loss:

from simdeblur.model import build_loss

criterion = build_loss({
    "name": "MSELoss",
})
x = torch.randn(2, 3, 256, 256)
y = torch.randn(2, 3, 256, 256)
print(criterion(x, y))

And the optimizer and lr_scheduler also can be created by "build_optimizer" and "build_lr_scheduler" etc.

Dataset Description

Click here for more information.

Acknowledgment

[1] facebookresearch. detectron2. https://github.com/facebookresearch/detectron2

[2] subeeshvasu. Awesome-Deblurring. https://github.com/subeeshvasu/Awesome-Deblurring

Citations

If SimDeblur helps your research or work, please consider citing SimDeblur.

@misc{cao2021simdeblur,
  author =       {Mingdeng Cao},
  title =        {SimDeblur},
  howpublished = {\url{https://github.com/ljzycmd/SimDeblur}},
  year =         {2021}
}

If you have any question, please contact me at mingdengcao AT gmail.com.

Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022