TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

Overview

TraSw for FairMOT

  • A Single-Target Attack example (Attack ID: 19; Screener ID: 24):
Fig.1 Original Fig.2 Attacked
By perturbing only two frames in this example video, we can exchange the 19th ID and the 24th ID completely. Starting from frame 592, the 19th and 24th IDs can keep the exchange without noise.

TraSw: Tracklet-Switch Adversarial Attacks against Multi-Object Tracking,
Delv Lin, Qi Chen, Chengyu Zhou, Kun He,
arXiv 2111.08954

Related Works

Abstract

Benefiting from the development of Deep Neural Networks, Multi-Object Tracking (MOT) has achieved aggressive progress. Currently, the real-time Joint-Detection-Tracking (JDT) based MOT trackers gain increasing attention and derive many excellent models. However, the robustness of JDT trackers is rarely studied, and it is challenging to attack the MOT system since its mature association algorithms are designed to be robust against errors during tracking. In this work, we analyze the weakness of JDT trackers and propose a novel adversarial attack method, called Tracklet-Switch (TraSw), against the complete tracking pipeline of MOT. Specifically, a push-pull loss and a center leaping optimization are designed to generate adversarial examples for both re-ID feature and object detection. TraSw can fool the tracker to fail to track the targets in the subsequent frames by attacking very few frames. We evaluate our method on the advanced deep trackers (i.e., FairMOT, JDE, ByteTrack) using the MOT-Challenge datasets (i.e., 2DMOT15, MOT17, and MOT20). Experiments show that TraSw can achieve a high success rate of over 95% by attacking only five frames on average for the single-target attack and a reasonably high success rate of over 80% for the multiple-target attack.

Attack Performance

Single-Target Attack Results on MOT challenge test set

Dataset Suc. Rate Avg. Frames Avg. L2 Distance
2DMOT15 95.37% 4.67 3.55
MOT17 96.35% 5.61 3.23
MOT20 98.89% 4.12 3.12

Multiple-Target Attack Results on MOT challenge test set

Dataset Suc. Rate Avg. Frames (Proportion) Avg. L2 Distance
2DMOT15 81.95% 35.06% 2.79
MOT17 82.01% 38.85% 2.71
MOT20 82.02% 54.35% 3.28

Installation

  • same as FairMOT

  • Clone this repo, and we'll call the directory that you cloned as ${FA_ROOT}

  • Install dependencies. We use python 3.7 and pytorch >= 1.2.0

  • conda create -n FA
    conda activate FA
    conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
    cd ${FA_ROOT}
    pip install -r requirements.txt
    cd src/lib/models/networks/DCNv2 sh make.sh
  • We use DCNv2 in our backbone network and more details can be found in their repo.

  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

  • We only use the same test data as FairMOT.

  • 2DMOT15, MOT17 and MOT20 can be downloaded from the official webpage of MOT-Challenge. After downloading, you should prepare the data in the following structure:

    ${DATA_DIR}
        ├── MOT15
        │   └── images
        │       ├── test
        │       └── train
        ├── MOT17
        │   └── images
        │       ├── test
        │       └── train
        └── MOT20
            └── images
                ├── test
                └── train
    

Target Model

Tracking without Attack

  • tracking on original videos of 2DMOT15, MOT17, and MOT20
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}

Attack

Single-Target Attack

  • attack all attackable objects separately in videos in parallel (may require a lot of memory).
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
  • attack a specific object in a specific video (require to set specific video in src/track.py).
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}

Multiple-Targets Attack

  • attack all attackable objects in videos.
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple

Acknowledgement

This source code is based on FairMOT. Thanks for their wonderful works.

Citation

@misc{lin2021trasw,
      title={TraSw: Tracklet-Switch Adversarial Attacks against Multi-Object Tracking}, 
      author={Delv Lin and Qi Chen and Chengyu Zhou and Kun He},
      year={2021},
      eprint={2111.08954},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Derry Lin
Derry Lin
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023