Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Related tags

Deep LearningHNDR
Overview

Handheld Multi-Frame Neural Depth Refinement

This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement .

If you use parts of this work, or otherwise take inspiration from it, please considering citing our paper:

@article{chugunov2021implicit,
  title={The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement},
  author={Chugunov, Ilya and Zhang, Yuxuan and Xia, Zhihao and Zhang, Cecilia and Chen, Jiawen and Heide, Felix},
  journal={arXiv preprint arXiv:2111.13738},
  year={2021}
}

Requirements:

  • Developed using PyTorch 1.10.0 on Linux x64 machine
  • Condensed package requirements are in \requirements.txt. Note that this contains the package versions at the time of publishing, if you update to, for example, a newer version of PyTorch you will need to watch out for changes in class/function calls

Data:

  • Download data from this Google Drive link and unpack into the \data folder
  • Each folder corresponds to a scene [castle, eagle, elephant, frog, ganesha, gourd, rocks, thinker] and contains four files.
    • model.pt is the frozen, trained MLP corresponding to the scene
    • frame_bundle.npz is the recorded bundle data (images, depth, and poses)
    • reprojected_lidar.npy is the merged LiDAR depth baseline as described in the paper
    • snapshot.mp4 is a video of the recorded snapshot for visualization purposes

An explanation of the format and contents of the frame bundles (frame_bundle.npz) is given in an interactive format in \0_data_format.ipynb. We recommend you go through this jupyter notebook before you record your own bundles or otherwise manipulate the data.

Project Structure:

HNDR
  ├── checkpoints  
  │   └── // folder for network checkpoints
  ├── data  
  │   └── // folder for recorded bundle data
  ├── utils  
  │   ├── dataloader.py  // dataloader class for bundle data
  │   ├── neural_blocks.py  // MLP blocks and positional encoding
  │   └── utils.py  // miscellaneous helper functions (e.g. grid/patch sample)
  ├── 0_data_format.ipynb  // interactive tutorial for understanding bundle data
  ├── 1_reconstruction.ipynb  // interactive tutorial for depth reconstruction
  ├── model.py  // the learned implicit depth model
  │             // -> reproject points, query MLP for offsets, visualization
  ├── README.md  // a README in the README, how meta
  ├── requirements.txt  // frozen package requirements
  ├── train.py  // wrapper class for arg parsing and setting up training loop
  └── train.sh  // example script to run training

Reconstruction:

The jupyter notebook \1_reconstruction.ipynb contains an interactive tutorial for depth reconstruction: loading a model, loading a bundle, generating depth.

Training:

The script \train.sh demonstrates a basic call of \train.py to train a model on the gourd scene data. It contains the arguments

  • checkpoint_path - path to save model and tensorboard checkpoints
  • device - device for training [cpu, cuda]
  • bundle_path - path to the bundle data

For other training arguments, see the argument parser section of \train.py.

Best of luck,
Ilya

PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023