Deep Inertial Prediction (DIPr)

Related tags

Deep Learningdipr
Overview

Deep Inertial Prediction

For more information and context related to this repo, please refer to our website.

Getting Started (non Docker)

Note: you will need to have pytorch installed (tested with 1.8 and higher)

python3 -m venv <venv_path>
source <venv_path>/bin/activate

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
pip3 install -e .
python3 dipr/evaluate.py --challenge_folder <data_path>

Getting Started (with Docker)

You will need docker and realpath commands to be installed

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

M1 Mac note: You can use either the X86_64 container or the arm64 container. If you use the x86_64 container, you may see "Could not initialize NNPACK! Reason: Unsupported hardware." This is only a warning. It will however take a long time to run (about 30 minutes or longer after the docker build finishes)

Package Content

  • dataset.py - sample API to read the challenge hdf5 dataset format
  • cnn_backend.py - a file with CNN inference backends (currenly only TorchScript is supported). If you plan to work on a DL inference framework other than TorchScript, implement it there
  • noise_utils.py - a file with noise calibration and parameters, you may adjust them to generate your own noise levels
  • imu_fallback.py - a sample implmentation of ImuFallback with CNN velocity measurements
  • utils.py - auxiliary tools
  • evaluate.py - sample test script that runs ImuFallback on available datasets and outputs Mean Absolute Velocity metric

Running sample evaluation script

python3 evaluate.py --challenge_folder <data_path>

or for the docker versions

# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

It will output something like:

python3.9 evaluate.py -df shared
Dataset OpenVR_2021-09-02_17-40-34-synthetic, segments durations [7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 ] sec
Processing datasets: 100%|██████████| 1/1 [05:04<00:00, 304.92s/files]
all_vel_mae_cnn 2.12cm/s
all_vel_mae_fallback 9.73cm/s
all_pose_mae_fallback 15.51cm

Which mean it found OpenVR_2021-09-02_17-40-34-synthetic test dataset, and executed ImuFallback on 13 segments of duration 7 seconds, and estimated over them averaged Mean Absolute Velocity Error as 9.73cm/s

It also outputs image with tracking plots to <challenge_folder_root>/_results/<datasetname>.png. There are plots for IMU only tracking, ImuFallback + CNN traking and ground truth

Challenge folder Content

train_synthetic - a folder with train datasets, available after sign-up https://dipr.ai/sign-up

test_synthetic - a folder where evaluation script looks for test datasets (we share only one example dataset)

_results - a folder where evaluation script stores some results

pretrained - an example CNN model we ship

Known Issues

Installing dependencies natively on Apple Silicon may fail with the following:

> pip3 install -e .
...
    error: Command "clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -iwithsysroot/System/Library/Frameworks/System.framework/PrivateHeaders -iwithsysroot/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/Headers -arch arm64 -arch x86_64 -Werror=implicit-function-declaration -ftrapping-math -DNPY_INTERNAL_BUILD=1 -DHAVE_NPY_CONFIG_H=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -D_LARGEFILE64_SOURCE=1 -DNO_ATLAS_INFO=3 -DHAVE_CBLAS -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/umath -Inumpy/core/include -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/include/numpy -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/distutils/include -Inumpy/core/src/common -Inumpy/core/src -Inumpy/core -Inumpy/core/src/npymath -Inumpy/core/src/multiarray -Inumpy/core/src/umath -Inumpy/core/src/npysort -Inumpy/core/src/_simd -I<venv_path>/include -I/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/include/python3.8 -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/npymath -c numpy/core/src/multiarray/dragon4.c -o build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o -MMD -MF build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o.d -msse3 -I/System/Library/Frameworks/vecLib.framework/Headers" failed with exit status 1
    ----------------------------------------
    ERROR: Failed building wheel for numpy

Workaround: use the Docker instructions

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Arcturus Industries
Arcturus Industries
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023