Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

Overview

SAFA: Structure Aware Face Animation (3DV2021)

Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

Screenshot Screenshot Screenshot Screenshot

Screenshot

Getting Started

git clone https://github.com/Qiulin-W/SAFA.git

Installation

Python 3.6 or higher is recommended.

1. Install PyTorch3D

Follow the guidance from: https://github.com/facebookresearch/pytorch3d/blob/master/INSTALL.md.

2. Install Other Dependencies

To install other dependencies run:

pip install -r requirements.txt

Usage

1. Preparation

a. Download FLAME model, choose FLAME 2020 and unzip it, put generic_model.pkl under ./modules/data.

b. Download head_template.obj, landmark_embedding.npy, uv_face_eye_mask.png and uv_face_mask.png from DECA/data, and put them under ./module/data.

c. Download SAFA model checkpoint from Google Drive and put it under ./ckpt.

d. (Optional, required by the face swap demo) Download the pretrained face parser from face-parsing.PyTorch and put it under ./face_parsing/cp.

2. Demos

We provide demos for animation and face swap.

a. Animation demo

python animation_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video --relative --adapt_scale --find_best_frame

b. Face swap demo We adopt face-parsing.PyTorch for indicating the face regions in both the source and driving images.

For preprocessed source images and driving videos, run:

python face_swap_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video

For arbitrary images and videos, we use a face detector to detect and swap the corresponding face parts. Cropped images will be resized to 256*256 in order to fit to our model.

python face_swap_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video --use_detection

Training

We modify the distributed traininig framework used in that of the First Order Motion Model. Instead of using torch.nn.DataParallel (DP), we adopt torch.distributed.DistributedDataParallel (DDP) for faster training and more balanced GPU memory load. The training procedure is divided into two steps: (1) Pretrain the 3DMM estimator, (2) End-to-end Training.

3DMM Estimator Pre-training

CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node 4 run_ddp.py --config config/pretrain.yaml

End-to-end Training

CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node 4 run_ddp.py --config config/end2end.yaml --tdmm_checkpoint path/to/tdmm_checkpoint_pth

Evaluation / Inference

Video Reconstrucion

python run_ddp.py --config config/end2end.yaml --checkpoint path/to/checkpoint --mode reconstruction

Image Animation

python run_ddp.py --config config/end2end.yaml --checkpoint path/to/checkpoint --mode animation

3D Face Reconstruction

python tdmm_inference.py --data_dir directory/to/images --tdmm_checkpoint path/to/tdmm_checkpoint_pth

Dataset and Preprocessing

We use VoxCeleb1 to train and evaluate our model. Original Youtube videos are downloaded, cropped and splited following the instructions from video-preprocessing.

a. To obtain the facial landmark meta data from the preprocessed videos, run:

python video_ldmk_meta.py --video_dir directory/to/preprocessed_videos out_dir directory/to/output_meta_files

b. (Optional) Extract images from videos for 3DMM pretraining:

python extract_imgs.py

Citation

If you find our work useful to your research, please consider citing:

@article{wang2021safa,
  title={SAFA: Structure Aware Face Animation},
  author={Wang, Qiulin and Zhang, Lu and Li, Bo},
  journal={arXiv preprint arXiv:2111.04928},
  year={2021}
}

License

Please refer to the LICENSE file.

Acknowledgement

Here we provide the list of external sources that we use or adapt from:

  1. Codes are heavily borrowed from First Order Motion Model, LICENSE.
  2. Some codes are also borrowed from: a. FLAME_PyTorch, LICENSE b. generative-inpainting-pytorch, LICENSE c. face-parsing.PyTorch, LICENSE d. video-preprocessing.
  3. We adopt FLAME model resources from: a. DECA, LICENSE b. FLAME, LICENSE
  4. External Libaraies: a. PyTorch3D, LICENSE b. face-alignment, LICENSE
Owner
QiulinW
MSc at Imperial College London, now working at JD Technology.
QiulinW
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021