SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

Overview

SE3 Pose Interpolation

Pose estimated from SLAM system are always discrete, and often not equal to the original sequence frame size.

This repo helps to remedy it and interpolate the pose for any interval timestamp you want.

p_interp_demo

Dependencies & Environment

The repo has minimal requirement:

python==3.7
numpy==1.19
transformations==2021.6.6
evo==v1.13.5

How to Run

The script takes two files as input data, keyframe pose and lookup timestamps, the lookup timestamps contains much more timestamps data than keyframe sequences.

To run this script simply try:

python pose_interp.py --kf_pose ./data/kf_pose_result_tum.txt \
                      --timestamps ./data/timestamps.txt

The output file will be saved at the same directory with extra suffix _interp.txt

File format

Please make sure the estimated key-frame pose file (e.g.: ./data/kf_pose_result_tum.txt) is in TUM format:

timestamp t_x t_y t_z q_x q_y q_z q_w

The timestamps file for all frames (e.g.: ./data/timestamps.txt) is saved as following:

sequence_id timestamp

The output interpolated pose file which contains pose for each timestamp of every frame in the original sequence (e.g.: ./data/kf_pose_result_tum_interp.txt) is also in TUM format:

timestamp t_x t_y t_z q_x q_y q_z q_w

Visualization

We use evo to visualize the pose file, simply run the following code to get the plots

pose_interp

To run the visualization code, please try:

python pose_vis.py --kf_pose ./data/kf_pose_result_tum_vis.txt --full_pose ./data/kf_pose_result_tum_interp.txt

Please note that file kf_pose_result_tum_vis.txt is downsampled from original keyframe sequence kf_pose_result_tum_vis.txt for better visualization effect.

Disclaimer

This repo is adapted from https://github.com/ethz-asl/robotcar_tools/blob/master/python/interpolate_poses.py

The modification includes:

  • fixed axis align mis-match bug
  • add visualization for sanity check
  • consistent data format with clear comments
  • loop up any given interval timestamp

If you use part of this code please cite:

@software{cheng2022poseinterp,
  author = {Lisa, Mona and Bot, Hew},
  doi = {10.5281/zenodo.1234},
  month = {12},
  title = {{SE3 Pose Interpolation Toolbox}},
  url = {https://github.com/rancheng/se3_pose_interp},
  version = {1.0.0},
  year = {2022}
}

and

@article{RobotCarDatasetIJRR,
  Author = {Will Maddern and Geoff Pascoe and Chris Linegar and Paul Newman},
  Title = {{1 Year, 1000km: The Oxford RobotCar Dataset}},
  Journal = {The International Journal of Robotics Research (IJRR)},
  Volume = {36},
  Number = {1},
  Pages = {3-15},
  Year = {2017},
  doi = {10.1177/0278364916679498},
  URL =
{http://dx.doi.org/10.1177/0278364916679498},
  eprint =
{http://ijr.sagepub.com/content/early/2016/11/28/0278364916679498.full.pdf+html},
  Pdf = {http://robotcar-dataset.robots.ox.ac.uk/images/robotcar_ijrr.pdf}}

License

SE3_Pose_Interp is released under a MIT license (see LICENSE.txt)

If you use SE3_Pose_Interp in an academic work, please cite the most relevant publication associated by visiting: https://rancheng.github.io

Owner
Ran Cheng
Robotics, Vision, Learning
Ran Cheng
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022