Official implement of "CAT: Cross Attention in Vision Transformer".

Related tags

Deep LearningCAT
Overview

CAT: Cross Attention in Vision Transformer

This is official implement of "CAT: Cross Attention in Vision Transformer".

Abstract

Since Transformer has found widespread use in NLP, the potential of Transformer in CV has been realized and has inspired many new approaches. However, the computation required for replacing word tokens with image patches for Transformer after the tokenization of the image is vast(e.g., ViT), which bottlenecks model training and inference. In this paper, we propose a new attention mechanism in Transformer termed Cross Attention, which alternates attention inner the image patch instead of the whole image to capture local information and apply attention between image patches which are divided from single-channel feature maps to capture global information. Both operations have less computation than standard self-attention in Transformer. By alternately applying attention inner patch and between patches, we implement cross attention to maintain the performance with lower computational cost and build a hierarchical network called Cross Attention Transformer(CAT) for other vision tasks. Our base model achieves state-of-the-arts on ImageNet-1K, and improves the performance of other methods on COCO and ADE20K, illustrating that our network has the potential to serve as general backbones.

CAT achieves strong performance on COCO object detection(implemented with mmdectection) and ADE20K semantic segmentation(implemented with mmsegmantation).

architecture

Pretrained Models and Results on ImageNet-1K

name resolution [email protected] [email protected] #params FLOPs model log
CAT-T 224x224 80.3 95.0 17M 2.8G github github
CAT-S* 224x224 81.8 95.6 37M 5.9G github github
CAT-B 224x224 82.8 96.1 52M 8.9G github github
CAT-T-v2 224x224 81.7 95.5 36M 3.9G Coming Coming

Note: * indicates new version of model and log.

Models and Results on Object Detection (COCO 2017 val)

Backbone Method pretrain Lr Schd box mAP mask mAP #params FLOPs model log
CAT-S Mask R-CNN+ ImageNet-1K 1x 41.6 38.6 57M 295G github github
CAT-B Mask R-CNN+ ImageNet-1K 1x 41.8 38.7 71M 356G github github
CAT-S FCOS ImageNet-1K 1x 40.0 - 45M 245G github github
CAT-B FCOS ImageNet-1K 1x 41.0 - 59M 303G github github
CAT-S ATSS ImageNet-1K 1x 42.0 - 45M 243G github github
CAT-B ATSS ImageNet-1K 1x 42.5 - 59M 303G github github
CAT-S RetinaNet ImageNet-1K 1x 40.1 - 47M 276G github github
CAT-B RetinaNet ImageNet-1K 1x 41.4 - 62M 337G github github
CAT-S Cascade R-CNN ImageNet-1K 1x 44.1 - 82M 270G github github
CAT-B Cascade R-CNN ImageNet-1K 1x 44.8 - 96M 330G github github
CAT-S Cascade R-CNN+ ImageNet-1K 1x 45.2 - 82M 270G github github
CAT-B Cascade R-CNN+ ImageNet-1K 1x 46.3 - 96M 330G github github

Note: + indicates multi-scale training.

Models and Results on Semantic Segmentation (ADE20K val)

Backbone Method pretrain Crop Size Lr Schd mIoU mIoU (ms+flip) #params FLOPs model log
CAT-S Semantic FPN ImageNet-1K 512x512 80K 40.6 42.1 41M 214G github github
CAT-B Semantic FPN ImageNet-1K 512x512 80K 42.2 43.6 55M 276G github github
CAT-S Semantic FPN ImageNet-1K 512x512 160K 42.2 42.8 41M 214G github github
CAT-B Semantic FPN ImageNet-1K 512x512 160K 43.2 44.9 55M 276G github github

Citing CAT

You can cite the paper as:

@article{lin2021cat,
  title={CAT: Cross Attention in Vision Transformer},
  author={Hezheng Lin and Xing Cheng and Xiangyu Wu and Fan Yang and Dong Shen and Zhongyuan Wang and Qing Song and Wei Yuan},
  journal={arXiv preprint arXiv:2106.05786},
  year={2021}
}

Started

Please refer to get_started.

Acknowledgement

Our implementation is mainly based on Swin.

You might also like...
Implement A3C for Mujoco gym envs
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

The implement of papar
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

PyTorch Implement of Context Encoders: Feature Learning by Inpainting
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Implement some metaheuristics and cost functions
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Releases(v1.0)
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022