[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

Overview

DeepDeform (CVPR'2020)

DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow images and 4,479 foreground object masks. We also provide 149,228 sparse match annotations and 63,512 occlusion point annotations.

Download Data

If you would like to download the DeepDeform data, please fill out this google form and, once accepted, we will send you the link to download the data.

Online Benchmark

If you want to participate in the benchmark(s), you can submit your results at DeepDeform Benchmark website.

Currently we provide benchmarks for the following tasks:

By uploading your results on the test set to the DeepDeform Benchmark website the performance of you method is automatically evaluated on the hidden test labels, and compared to other already evaluated methods. You can decide if you want to make the evaluation results public or not.

If you want to evaluate on validation set, we provide code that is used for evaluation of specific benchmarks in directory evaluation/. To evaluate optical flow or non-rigid reconstruction, you need to adapt FLOW_RESULTS_DIR or RECONSTRUCTION_RESULTS_DIR in config.py to correspond to your results directory (that would be in the same format as for the online submission, described here).

In order to evaluate reconstruction, you need to compile additional C++ modules.

  • Install necessary dependencies:
pip install pybind11
pip install Pillow
pip install plyfile
pip install tqdm
pip install scikit-image
  • Inside the evaluation/csrc adapt includes.py to point to your Eigen include directory.

  • Compile the code by executing the following in evaluation/csrc:

python setup.py install

Data Organization

Data is organized into 3 subsets, train, val, and test directories, using 340-30-30 sequence split. In every subset each RGB-D sequence is stored in a directory <sequence_id>, which follows the following format:

<sequence_id>
|-- <color>: color images for every frame (`%06d.jpg`)
|-- <depth>: depth images for every frame (`%06d.png`)
|-- <mask>: mask images for a few frames (`%06d.png`)
|-- <optical_flow>: optical flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.oflow` or `%s_%06d_%06d.oflow`)
|-- <scene_flow>: scene flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.sflow` or `%s_%06d_%06d.sflow`)
|-- <intrinsics.txt>: 4x4 intrinsics matrix

All labels are provided in .json files in root dataset r directory:

  • train_matches.json and val_matches.json:
    Manually annotated sparse matches.
  • train_dense.json and val_dense.json:
    Densely aligned optical and scene flow images with the use of sparse matches as a guidance.
  • train_selfsupervised.json and val_selfsupervised.json:
    Densely aligned optical and scene flow images using self-supervision (DynamicFusion pipeline) for a few sequences. - train_selfsupervised.json and `val_skaldir
  • train_masks.json and val_masks.json:
    Dynamic object annotations for a few frames per sequence.
  • train_occlusions.json and val_occlusions.json:
    Manually annotated sparse occlusions.

Data Formats

We recommend you to test out scripts in demo/ directory in order to check out loading of different file types.

RGB-D Data: 3D data is provided as RGB-D video sequences, where color and depth images are already aligned. Color images are provided as 8-bit RGB .jpg, and depth images as 16-bit .png (divide by 1000 to obtain depth in meters).

Camera Parameters: A 4x4 intrinsic matrix is given for every sequence (because different cameras were used for data capture, every sequence can have different intrinsic matrix). Since the color and depth images are aligned, no extrinsic transformation is necessary.

Optical Flow Data: Dense optical flow data is provided as custom binary image of resolution 640x480 with extension .oflow. Every pixel contains two values for flow in x and y direction, in pixels. Helper function to load/store binary flow images is provided in utils.py.

Scene Flow Data: Dense scene flow data is provided as custom binary image of resolution 640x480 with extension .sflow. Every pixel contains 3 values for flow in x, y and z direction, in meters. Helper function to load/store binary flow images is provided in utils.py.

Object Mask Data: A few frames per sequences also include foreground dynamic object annotation. The mask image is given as 16-bit .png image (1 for object, 0 for background).

Sparse Match Annotations: We provide manual sparse match annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of source and target pixels.

Sparse Occlusion Annotations: We provide manual sparse occlusion annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of occluded pixels in source frame.

Citation

If you use DeepDeform data or code please cite:

@inproceedings{bozic2020deepdeform, 
    title={DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data}, 
    author={Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Zollh{\"o}fer, Michael and Theobalt, Christian and Nie{\ss}ner, Matthias}, 
    journal={Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2020}
}

Help

If you have any questions, please contact us at [email protected], or open an issue at Github.

License

The data is released under DeepDeform Terms of Use, and the code is release under a non-comercial creative commons license.

Owner
Aljaz Bozic
PhD Student at Visual Computing Group
Aljaz Bozic
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021