Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

Overview

UncertaintyAwareCycleConsistency

This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness via Uncertainty-aware Cycle Consistency. Translation methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty, leading to performance degradation when encountering unseen perturbations at test time. To address this, we propose a method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized Gaussian distribution, capable of modelling heavy-tailed distributions.

Requirements

python >= 3.6.10
pytorch >= 1.6.0
jupyter lab
torchio
scikit-image
scikit-learn

The structure of the repository is as follows:

root
 |-ckpt/ (will save all the checkpoints)
 |-data/ (save your data and related script)
 |-src/ (contains all the source code)
    |-ds.py 
    |-networks.py
    |-utils.py
    |-losses.py

Preparing Datasets

To prepare your datasets to use with this repo, place the root directory of the dataset in data/. The recommended way to structure your data is shown below.

data/
    |-Dataset_1/
        |-A/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...
        |-B/
            |-image1.png
            |-image2.png
            |-image3.png
            |-...

Note the images need not be paired. The python script src/ds.py provides the PyTorch Dataset class to read such a dataset, used as explained below.

class Images_w_nameList(data.Dataset):
    '''
    can act as supervised or un-supervised based on flists
    '''
    def __init__(self, root1, root2, flist1, flist2, transform=None):

Here root1 and root2 represents the root directory for domain A and B, respectively. flist1 and flist2 contain image names for domain A and domain B. Note, if flist1 and flist2 are aligned then dataset will load paired images. To use it as unsupervised dataset loader ensure that flist1 and flist2 are not aligned.

Learning models with uncertainty

src/networks.py provides the generator and discriminator architectures.

src/utils.py provides the training API train_UGAC. The API is to train a pair of GANs, with the generators modified to predict the parameters of the generalized Gaussian distribution GGD ($\alpha$, $\beta$, $\mu$), as depicted in the above figure.

An example command to use the first API is:

#first instantiate the generators and discriminators
netG_A = CasUNet_3head(3,3)
netD_A = NLayerDiscriminator(3, n_layers=4)
netG_B = CasUNet_3head(3,3)
netD_B = NLayerDiscriminator(3, n_layers=4)

netG_A, netD_A, netG_B, netD_B = train_UGAC(
    netG_A, netG_B,
    netD_A, netD_B,
    train_loader,
    dtype=torch.cuda.FloatTensor,
    device='cuda',
    num_epochs=10,
    init_lr=1e-5,
    ckpt_path='../ckpt/ugac',
    list_of_hp = [1, 0.015, 0.01, 0.001, 1, 0.015, 0.01, 0.001, 0.05, 0.05, 0.01],
)

This will save checkpoints in ckpt/ named as ugac_eph*.pth. The arguement list_of_hp is a list of all the hyper-parameters representing weights of different weigths in the loss function.

Apart from the code in this repository, we also use the code from many other repositories like this, this, and this.

Bibtex

If you find the bits from this project helpful, please cite the following works:

Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022