The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Overview

SIGIR2021-EGLN

The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Neural graph based Collaborative Filtering (CF) models learn user and item embeddings based on the user-item bipartite graph structure, and have achieved state-of-the-art recommendation performance. In the ubiquitous implicit feedback based CF, users’ unobserved behaviors are treated as unlinked edges in the user-item bipartite graph. As users’ unobserved behaviors are mixed with dislikes and unknown positive preferences, the fixed graph structure input is missing with potential positive preference links. In this paper, we study how to better learn enhanced graph structure for CF. We argue that node embedding learning and graph structure learning can mutually enhance each other in CF, as updated node embeddings are learned from previous graph structure, and vice versa (i.e., newly updated graph structure are optimized based on current node embedding results). Some previous works provided approaches to refine the graph structure. However, most of these graph learning models relied on node features for modeling, which are not available in CF. Besides, nearly all optimization goals tried to compare the learned adaptive graph and the original graph from a local reconstruction perspective, whether the global properties of the adaptive graph structure are modeled in the learning process is still unknown. To this end, in this paper, we propose an enhanced graph learning network (EGLN ) approach for CF via mutual information maximization. The key idea of EGLN is two folds: First, we let the enhanced graph learning module and the node embedding module iteratively learn from each other without any feature input. Second, we design a local-global consistency optimization function to capture the global properties in the enhanced graph learning process. Finally, extensive experimental results on three real-world datasets clearly show the effectiveness of our proposed model.

Prerequisites

  • Tensorflow 1.15.0
  • Python 3.7.9

Usage

  • Dataset:
    Under the data folder(cd ./datasets)
  • Run model for amazon dataset:
    cd ./code/amazon_code python egln.py

Citation

If you find this useful for your research, please kindly cite the following paper:

@inproceedings{yang2021enhanced,
  title={Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization},
  author={Yang, Yonghui and Wu, Le and Hong, Richang and Zhang, Kun and Wang, Meng},
  booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={71--80},
  year={2021}
}

This work focus on graph structure learning via graph mutual infomax. If you are also interested in graph node attributes learning, you can refer to the following paper:

@inproceedings{wu2020joint,
  title={Joint item recommendation and attribute inference: An adaptive graph convolutional network approach},
  author={Wu, Le and Yang, Yonghui and Zhang, Kun and Hong, Richang and Fu, Yanjie and Wang, Meng},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={679--688},
  year={2020}
}

Author contact:

Email: [email protected]

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022