GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

Overview

GarmentNets

This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion. This paper has been accepted to ICCV 2021.

Overview

Cite this work

@inproceedings{chi2021garmentnets,
  title={GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion},
  author={Chi, Cheng and Song, Shuran},
  booktitle={The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Datasets

  1. GarmentNets Dataset (GarmentNets training and evaluation)

  2. GarmentNets Simulation Dataset (raw Blender simluation data to generate the GarmentNets Dataset)

  3. CLOTH3D Dataset (cloth meshes in a canonical pose)

The GarmentNets Dataset contains point clouds before and after gripping simulation with point-to-point correspondance, as well as the winding number field ($128^3$ volume).

The GarmentNets Simulation Dataset contains the raw vertecies, RGBD images and per-pixel UV from Blender simulation and rendering of CLOTH3D dataset. Each cloth instance in CLOTH3D is simulated 21 times with different random gripping points.

Both datasets are stored using Zarr format.

Pretrained Models

GarmentNets Pretrained Models

GarmentNets are trained in 2 stages:

  1. PointNet++ canoninicalization network
  2. Winding number field and warp field prediction network

The checkpoints for 2 stages x 6 categories (12 in total) are all included. For evaluation, the checkpoints in the garmentnets_checkpoints/pipeline_checkpoints directory should be used.

Usage

Installation

A conda environment.yml for python=3.9, pytorch=1.9.0, cudatoolkit=11.1 is provided.

conda env create --file environment.yml

Alternatively, you can directly executive following commands:

conda install pytorch torchvision cudatoolkit=11.1 pytorch-geometric pytorch-scatter wandb pytorch-lightning igl hydra-core scipy scikit-image matplotlib zarr numcodecs tqdm dask numba -c pytorch -c nvidia -c rusty1s -c conda-forge

pip install potpourri3d==0.0.4

Evaluation

Assuming the project directory is ~/dev/garmentnets. Assuming the GarmentNets Dataset has been extracted to /data/garmentnets_dataset.zarr and GarmentNets Pretrained Models has been extracted to /data/garmentnets_checkpoints .

Generate prediction Zarr with

(garmentnets)$ python predict.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr/Dress main.checkpoint_path=
    
     /data/garmentnets_checkpoints/pipeline_checkpoints/Dress_pipeline.ckpt

    
   

Note that the dataset zarr_path and checkpoitn_path must belong to the same category (Dress in this case).

Hydra should automatically create a run directory such as /outputs/2021-07-31/01-43-33 . To generate evaluation metrics, execute:

(garmentnets)$ python eval.py main.prediction_output_dir=
   
    /outputs/2021-07-31/01-43-33

   

The all_metrics_agg.csv and summary.json should show up in the Hydra generated directory for this run.

Training

As mentioned above, GarmentNets are trained in 2 stages. Using a single Nvidia RTX 2080Ti, training stage 1 will take roughly a week and training stage 2 can usually be done overnight.

To retrain stage 2 with a pre-trained stage 1 checkpoint:

(garmentnets)$ python train_pipeline.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr pointnet2_model.checkpoint_path=
    
     /data/garmentnets_checkpoints/pointnet2_checkpoints/Dress_pointnet2.ckpt

    
   

To train stage 1 from scratch:

(garmentnets)$ python train_pointnet2.py datamodule.zarr_path=
   
    /data/garmentnets_dataset.zarr

   
Owner
Columbia Artificial Intelligence and Robotics Lab
Columbia Artificial Intelligence and Robotics Lab
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022