NeurIPS 2021, self-supervised 6D pose on category level

Overview

SE(3)-eSCOPE

video | paper | website

Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

Xiaolong Li, Yijia Weng, Li Yi , Leonidas Guibas, A. Lynn Abbott, Shuran Song, He Wang

NeurIPS 2021

SE(3)-eSCOPE is a self-supervised learning framework to estimate category-level 6D object pose from single 3D point clouds, with no ground-truth pose annotations, no GT CAD models, and no multi-view supervision during training. The key to our method is to disentangle shape and pose through an invariant shape reconstruction module and an equivariant pose estimation module, empowered by SE(3) equivariant point cloud networks and reconstruction loss.

News

[2021-11] We release the training code for 5 categories.

Prerequisites

The code is built and tested with following libraries:

  • Python>=3.6
  • PyTorch/1.7.1
  • gcc>=6.1.0
  • cmake
  • cuda/11.0.1, or cuda/11.1 for newer GPUs
  • cudnn

Recommended Installation

# 1. install python environments
conda create --name equi-pose python=3.6
source activate equi-pose
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

# 2. compile extra CUDA libraries
bash build.sh

Data Preparation

You could find the subset we use for ModelNet40 directly [drive_link], and our rendered depth point clouds dataset [drive_link], download and put them into your own 'data' folder. check global_info.py for codes and data paths.

Training

You may run the following code to train the model from scratch:

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category]

For example, to train the model on completet airplane, you may run

python main.py exp_num='1.0' training="complete_pcloud" dataset="modelnet40_complete" category='airplane' use_wandb=True

Testing Pretrained Models

Some of our pretrained checkpoints have been released, check [drive_link]. Put them in the 'second_path/models' folder. You can run the following command to test the performance;

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category] eval=True save=True

For example, to test the model on complete airplane category or partial airplane, you may run

python main.py exp_num='0.813' training="complete_pcloud" dataset="modelnet40_complete" category='airplane'
eval=True save=True
python main.py exp_num='0.913r' training="partial_pcloud" dataset="modelnet40_partial" category='airplane' eval=True save=True

Note: add "use_fps_points=True" to get slightly better results; for your own datasets, add 'pre_compute_delta=True' and use example canonical shapes to compute pose misalignment first.

Visualization

Check out my script demo.py or teaser.py for some hints.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{li2021leveraging,
    title={Leveraging SE (3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds},
    author={Li, Xiaolong and Weng, Yijia and Yi, Li and Guibas, Leonidas and Abbott, A Lynn and Song, Shuran and Wang, He},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021}
  }

We thank Haiwei Chen for the helpful discussions on equivariant neural networks.

Owner
Xiaolong
PhD student in Computer Vision, Virginia Tech
Xiaolong
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021