RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

Overview

RMNet: Equivalently Removing Residual Connection from Networks

This repository is the official implementation of "RMNet: Equivalently Removing Residual Connection from Networks".

Requirements

To install requirements:

pip install torch
pip install torchvision

Training

To train the models in the paper, run this command:

python train.py -a rmrep_69 --dist-url 'tcp://127.0.0.1:23333' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --workers 32 [imagenet-folder with train and val folders]

Our Pre-trained Models

You can download pretrained models here:

Evaluation

To evaluate our pre-trained models trained on ImageNet, run:

python train.py -a rmrep_69 -e checkpoint/rmrep_69.pth.tar [imagenet-folder with train and val folders]

Results

Our model achieves the following performance on :

Help RepVGG achieve better performance even when the depth is large

Arch Top-1 Accuracy(%) Top-5 Accuracy(%) Train FLOPs(G) Test FLOPs(M)
RepVGG-21 72.508 90.840 2.4 2.1
RepVGG-21(RM 0.25) 72.590 90.924 2.1 2.1
RepVGG-37 74.408 91.900 4.4 4.0
RepVGG-37(RM 0.25) 74.478 91.892 3.9 4.0
RepVGG-69 74.526 92.182 8.6 7.7
RepVGG-69(RM 0.5) 75.088 92.144 6.5 7.7
RepVGG-133 70.912 89.788 16.8 15.1
RepVGG-133(RM 0.75) 74.560 92.000 10.6 15.1

Image Classification on ImageNet

Model name Top 1 Accuracy(%) Top 5 Accuracy(%)
RMNeXt 41x5_16 78.498 94.086
RMNeXt 50x5_32 79.076 94.444
RMNeXt 50x6_32 79.57 94.644
RMNeXt 101x6_16 80.07 94.918
RMNeXt 152x6_32 80.356 80.356

Citation

If you find this code useful, please cite the following paper:

@misc{meng2021rmnet,
      title={RMNet: Equivalently Removing Residual Connection from Networks}, 
      author={Fanxu Meng and Hao Cheng and Jiaxin Zhuang and Ke Li and Xing Sun},
      year={2021},
      eprint={2111.00687},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contributing

Our code is based on RepVGG

Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022