Predicting future trajectories of people in cameras of novel scenarios and views.

Overview

Pedestrian Trajectory Prediction

Predicting future trajectories of pedestrians in cameras of novel scenarios and views.

This repository contains the code and models for the following ECCV'20 paper:

SimAug: Learning Robust Representatios from Simulation for Trajectory Prediction Junwei Liang, Lu Jiang, Alexander Hauptmann

Our Pipeline

Input: could be from a streaming camera or saved videos.

Detection: we used a pre-trained model called YOLO (You Only Look Once) to perform object detection, it uses convolutional neural networks to provide real-time object detection, it is popular for its speed and accuracy.

Tracking: we used a pre-trained model called Deep SORT (Simple Online and Realtime Tracking), it uses deep learning to perform object tracking in videos. It works by computing deep features for every bounding box and using the similarity between deep features to also factor into the tracking logic. It is known to work perfectly with YOLO and also popular for its speed and accuracy.

Resizing: at this step, we get the frames and resize them to the required shape which is 1920 X 1080.

Semantic Segmentation: we used a pre-trained model called Deep Lab (Deep Labeling) an algorithm made by Google, to perform the semantic segmentation task, this model works by assigning a predicted value for each pixel in an image or video with the help of deep neural network support. It performs a pixel-wise classification where each pixel is labeled by predicted value encoding its semantic class.

SimAug Model: Simulation as Augmentation, is a novel simulation data augmentation method for trajectory prediction. It augments the representation such that it is robust to the variances in semantic scenes and camera views, it predicts the trajectory in unseen camera views.

Predicted Trajectory: The output of the proposed pipeline.

Code

Fisrt you need to install packages according to the configuration file:

$ pip install -r requirements.txt

Running on video

Then download the deeplab ADE20k model(used for Semantic Segmentation):

$ wget http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_29.tar.gz
$ tar -zxvf deeplabv3_xception_ade20k_train_2018_05_29.tar.gz

Then download SimAug-trained model:

$ wget https://next.cs.cmu.edu/data/packed_models_eccv2020.tgz
$ tar -zxvf packed_models_eccv2020.tgz

Run the pretrained YOLOv5 & DEEPSORT

get the annotations on a sample video many_people.mp4 from yolo and deepsort + resized images to 1920 x 1080

dataset_resize,changelst , annotation = detect('many_people.mp4')

Prepare the annotation

  • get box centre x,y for each person (traj_data)
  • person_box_data : boxes coordinates for all persons
  • other_box_data : boxes of other objects in the same frame with each targeted person
traj_data, person_box_data, other_box_data  = prepared_data_sdd(annotation,changelst)

Run the segmentation model

model_path= 'deeplabv3_xception_ade20k_train/frozen_inference_graph.pb'
seg_output= extract_scene_seg(dataset_resize,model_path,every =100)

Prepare all data for the SimAug model

making npz which contanins arrays for details of the segmentation with annotations and person ids
data=To_npz(8,12,traj_data,seg_output)
np.savez("prepro_fold1/data_test.npz", **data)

Test SimAug-Trained Model

!python Code/test.py prepro_fold1/ packed_models/ best_simaug_model \
--wd 0.001 --runId 0 --obs_len 8 --pred_len 12 --emb_size 32 --enc_hidden_size 256 \
--dec_hidden_size 256 --activation_func tanh --keep_prob 1.0 --num_epochs 30 \
--batch_size 12 --init_lr 0.3 --use_gnn --learning_rate_decay 0.95 --num_epoch_per_decay 5.0 \
--grid_loss_weight 1.0 --grid_reg_loss_weight 0.5 --save_period 3000 \
--scene_h 36 --scene_w 64 --scene_conv_kernel 3 --scene_conv_dim 64 \
--scene_grid_strides 2,4 --use_grids 1,0 --val_grid_num 0 --gpuid 0 --load_best \
--save_output sdd_out.p
To Run the pipeline from here

Demo

ITI.Moving.vehicle.mp4

Results

We capture streaming video that contains 1628 frames, processing time for stages is

• Yolo & Deep SORT: 20.7 f/s

• DeepLabv3: 4.66 f/s

• SimAug: 12.8 f/s

Video_Name Grid_acc minADE minFDE
Moving-ITI 0.6098 22.132 39.271

Dependencies

• Python 3.6 ; TensorFlow 1.15.0 ; Pytorch 1.7 ; Cuda 10

Code Contributors

References

@inproceedings{liang2020simaug,
  title={SimAug: Learning Robust Representations from Simulation for Trajectory Prediction},
  author={Liang, Junwei and Jiang, Lu and Hauptmann, Alexander},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022