TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Related tags

Deep LearningTAUFE
Overview

TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Publication
Park, D., Song, H., Kim, M., and Lee, J., "Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data," In Proceedings of the 35th NeurIPS, December 2021, Virtual. [Paper]

Citation

@article{park2021task,
  title={Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data},
  author={Park, Dongmin and Song, Hwanjun and Kim, MinSeok and Lee, Jae-Gil},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

1. Overview

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization. Leveraging plenty of undesirable features in out-of-distribution (OOD) examples has emerged as a potential solution for de-biasing such features, and a recent study shows that softmax-level calibration of OOD examples can successfully remove the contribution of undesirable features to the last fully-connected layer of a classifier. However, its applicability is confined to the classification task, and its impact on a DNN feature extractor is not properly investigated. In this paper, we propose Taufe, a novel regularizer that deactivates many undesirable features using OOD examples in the feature extraction layer and thus removes the dependency on the task-specific softmax layer. To show the task-agnostic nature of Taufe, we rigorously validate its performance on three tasks, classification, regression, and a mix of them, on CIFAR-10, CIFAR-100, ImageNet, CUB200, and CAR datasets. The results demonstrate that Taufe consistently outperforms the state-of-the-art method as well as the baselines without regularization.

2. How to run

1. Image classification task

  • go to the folder 'code/classification/', and run STANDARD.py or TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100, imgnet10
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn, imgnet990, places365
--n-samples: the number of training samples for few-shot learning (integer)
--n-class: the number of classes (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

2. Semi-supervised learning task

  • go to the folder 'code/SSL/', and run MixMatch.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn
--n-labeled: the number of labeled samples (integer)
--train-iteration: the number of training iterations (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Bounding-box regression task

  • go to the folder 'code/regression/', and run bbox_Standard.py or bbox_TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cub200, car
--ood-data-name: the name of an out-of-distribution dataset (string) # imgnet, places365
--loss-type: the name of loss type (string) # L1, L1-IoU, D-IoU
--n-class: the number of classes (int)
--n-shots: the number of samples per class (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Requirement

  • Python 3
  • torch >= 1.3.0
Owner
KAIST Data Mining Lab
KAIST Data Mining Lab
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022