Area-weighted venn-diagrams for Python/matplotlib

Overview

Venn diagram plotting routines for Python/Matplotlib

https://travis-ci.org/konstantint/matplotlib-venn.png?branch=master

Routines for plotting area-weighted two- and three-circle venn diagrams.

Installation

The simplest way to install the package is via easy_install or pip:

$ easy_install matplotlib-venn

Dependencies

  • numpy,
  • scipy,
  • matplotlib.

Usage

The package provides four main functions: venn2, venn2_circles, venn3 and venn3_circles.

The functions venn2 and venn2_circles accept as their only required argument a 3-element list (Ab, aB, AB) of subset sizes, e.g.:

venn2(subsets = (3, 2, 1))

and draw a two-circle venn diagram with respective region areas. In the particular example, the region, corresponding to subset A and not B will be three times larger in area than the region, corresponding to subset A and B. Alternatively, you can simply provide a list of two set or Counter (i.e. multi-set) objects instead (new in version 0.7), e.g.:

venn2([set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])])

Similarly, the functions venn3 and venn3_circles take a 7-element list of subset sizes (Abc, aBc, ABc, abC, AbC, aBC, ABC), and draw a three-circle area-weighted venn diagram. Alternatively, you can provide a list of three set or Counter objects (rather than counting sizes for all 7 subsets).

The functions venn2_circles and venn3_circles draw just the circles, whereas the functions venn2 and venn3 draw the diagrams as a collection of colored patches, annotated with text labels. In addition (version 0.7+), functions venn2_unweighted and venn3_unweighted draw the Venn diagrams without area-weighting.

Note that for a three-circle venn diagram it is not in general possible to achieve exact correspondence between the required set sizes and region areas, however in most cases the picture will still provide a decent indication.

The functions venn2_circles and venn3_circles return the list of matplotlib.patch.Circle objects that may be tuned further to your liking. The functions venn2 and venn3 return an object of class VennDiagram, which gives access to constituent patches, text elements, and (since version 0.7) the information about the centers and radii of the circles.

Basic Example:

from matplotlib_venn import venn2
venn2(subsets = (3, 2, 1))

For the three-circle case:

from matplotlib_venn import venn3
venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))

A more elaborate example:

from matplotlib import pyplot as plt
import numpy as np
from matplotlib_venn import venn3, venn3_circles
plt.figure(figsize=(4,4))
v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'))
v.get_patch_by_id('100').set_alpha(1.0)
v.get_patch_by_id('100').set_color('white')
v.get_label_by_id('100').set_text('Unknown')
v.get_label_by_id('A').set_text('Set "A"')
c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed')
c[0].set_lw(1.0)
c[0].set_ls('dotted')
plt.title("Sample Venn diagram")
plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70),
             ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1),
             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))
plt.show()

An example with multiple subplots (new in version 0.6):

from matplotlib_venn import venn2, venn2_circles
figure, axes = plt.subplots(2, 2)
venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0])
venn2_circles((1, 2, 3), ax=axes[0][1])
venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0])
venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1])
plt.show()

Perhaps the most common use case is generating a Venn diagram given three sets of objects:

set1 = set(['A', 'B', 'C', 'D'])
set2 = set(['B', 'C', 'D', 'E'])
set3 = set(['C', 'D',' E', 'F', 'G'])

venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3'))
plt.show()

Questions

  • If you ask your questions at StackOverflow and tag them matplotlib-venn, chances are high you'll get an answer from the maintainer of this package.

See also

Owner
Konstantin Tretyakov
Konstantin Tretyakov
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
Ana's Portfolio

Ana's Portfolio ✌️ Welcome to my Portfolio! You will find here different Projects I have worked on (from scratch) 💪 Projects 💻 1️⃣ Hangman game (Mad

Ana Katherine Cortes Sobrino 9 Mar 15, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Parallel t-SNE implementation with Python and Torch wrappers.

Multicore t-SNE This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also wo

Dmitry Ulyanov 1.7k Jan 09, 2023
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Tyler Makaro 394 Dec 18, 2022
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
2021 grafana arbitrary file read

2021_grafana_arbitrary_file_read base on pocsuite3 try 40 default plugins of grafana alertlist annolist barchart cloudwatch dashlist elasticsearch gra

ATpiu 5 Nov 09, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Python Data Structures for Humans™.

Schematics Python Data Structures for Humans™. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar

Schematics 2.5k Dec 28, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Make visual music sheets for thatskygame (graphical representations of the Sky keyboard)

sky-python-music-sheet-maker This program lets you make visual music sheets for Sky: Children of the Light. It will ask you a few questions, and does

21 Aug 26, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
DrawBot lets you draw images taken from the internet on Skribbl.io, Gartic Phone and Paint

DrawBot You don't speak french? No worries, english translation is over here. C'est quoi ? DrawBot est un logiciel codé par V2F qui va prendre possess

V2F 205 Jan 01, 2023
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.

ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t

Carlos Bergillos 26 Dec 17, 2022