Parallel t-SNE implementation with Python and Torch wrappers.

Overview

Multicore t-SNE Build Status

This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also works faster than sklearn.TSNE on 1 core.

What to expect

Barnes-Hut t-SNE is done in two steps.

  • First step: an efficient data structure for nearest neighbours search is built and used to compute probabilities. This can be done in parallel for each point in the dataset, this is why we can expect a good speed-up by using more cores.

  • Second step: the embedding is optimized using gradient descent. This part is essentially consecutive so we can only optimize within iteration. In fact some parts can be parallelized effectively, but not all of them a parallelized for now. That is why second step speed-up will not be that significant as first step sepeed-up but there is still room for improvement.

So when can you benefit from parallelization? It is almost true, that the second step computation time is constant of D and depends mostly on N. The first part's time depends on D a lot, so for small D time(Step 1) << time(Step 2), for large D time(Step 1) >> time(Step 2). As we are only good at parallelizing step 1 we will benefit most when D is large enough (MNIST's D = 784 is large, D = 10 even for N=1000000 is not so much). I wrote multicore modification originally for Springleaf competition, where my data table was about 300000 x 3000 and only several days left till the end of the competition so any speed-up was handy.

Benchmark

1 core

Interestingly, that this code beats other implementations. We compare to sklearn (Barnes-Hut of course), L. Van der Maaten's bhtsne, py_bh_tsne repo (cython wrapper for bhtsne with QuadTree). perplexity = 30, theta=0.5 for every run. In fact py_bh_tsne repo works at the same speed as this code when using more optimization flags for compiler.

This is a benchmark for 70000x784 MNIST data:

Method Step 1 (sec) Step 2 (sec)
MulticoreTSNE(n_jobs=1) 912 350
bhtsne 4257 1233
py_bh_tsne 1232 367
sklearn(0.18) ~5400 ~20920

I did my best to find what is wrong with sklearn numbers, but it is the best benchmark I could do (you can find test script in python/tests folder).

Multicore

This table shows a relative to 1 core speed-up when using n cores.

n_jobs Step 1 Step 2
1 1x 1x
2 1.54x 1.05x
4 2.6x 1.2x
8 5.6x 1.65x

How to use

Python and torch wrappers are available.

Python

Install

Directly from pypi

pip install MulticoreTSNE

From source

Make sure cmake is installed on your system, and you will also need a sensible C++ compiler, such as gcc or llvm-clang. On macOS, you can get both via homebrew.

To install the package, please do:

git clone https://github.com/DmitryUlyanov/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .

Tested with both Python 2.7 and 3.6 (conda) and Ubuntu 14.04.

Run

You can use it as a near drop-in replacement for sklearn.manifold.TSNE.

from MulticoreTSNE import MulticoreTSNE as TSNE

tsne = TSNE(n_jobs=4)
Y = tsne.fit_transform(X)

Please refer to sklearn TSNE manual for parameters explanation.

This implementation n_components=2, which is the most common case (use Barnes-Hut t-SNE or sklearn otherwise). Also note that some parameters are there just for the sake of compatibility with sklearn and are otherwise ignored. See MulticoreTSNE class docstring for more info.

MNIST example

from sklearn.datasets import load_digits
from MulticoreTSNE import MulticoreTSNE as TSNE
from matplotlib import pyplot as plt

digits = load_digits()
embeddings = TSNE(n_jobs=4).fit_transform(digits.data)
vis_x = embeddings[:, 0]
vis_y = embeddings[:, 1]
plt.scatter(vis_x, vis_y, c=digits.target, cmap=plt.cm.get_cmap("jet", 10), marker='.')
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()

Test

You can test it on MNIST dataset with the following command:

python MulticoreTSNE/examples/test.py <n_jobs>

Note on jupyter use

To make the computation log visible in jupyter please install wurlitzer (pip install wurlitzer) and execute this line in any cell beforehand:

%load_ext wurlitzer

Memory leakages are possible if you interrupt the process. Should be OK if you let it run until the end.

Torch

To install execute the following command from repository folder:

luarocks make torch/tsne-1.0-0.rockspec

or

luarocks install https://raw.githubusercontent.com/DmitryUlyanov/Multicore-TSNE/master/torch/tsne-1.0-0.rockspec

You can run t-SNE like that:

tsne = require 'tsne'

Y = tsne(X, n_components, perplexity, n_iter, angle, n_jobs)

torch.DoubleTensor type only supported for now.

License

Inherited from original repo's license.

Future work

  • Allow other types than double
  • Improve step 2 performance (possible)

Citation

Please cite this repository if it was useful for your research:

@misc{Ulyanov2016,
  author = {Ulyanov, Dmitry},
  title = {Multicore-TSNE},
  year = {2016},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/DmitryUlyanov/Multicore-TSNE}},
}

Of course, do not forget to cite L. Van der Maaten's paper

Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
Python package to Create, Read, Write, Edit, and Visualize GSFLOW models

pygsflow pyGSFLOW is a python package to Create, Read, Write, Edit, and Visualize GSFLOW models API Documentation pyGSFLOW API documentation can be fo

pyGSFLOW 21 Dec 14, 2022
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 723 Jan 07, 2023
Design your own matplotlib stylefile interactively

Tired of playing with font sizes and other matplotlib parameters every time you start a new project or write a new plotting function? Want all you plots have the same style? Use matplotlib configurat

yobi byte 207 Dec 08, 2022
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023
Mattia Ficarelli 2 Mar 29, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
Python & Julia port of codes in excellent R books

X4DS This repo is a collection of Python & Julia port of codes in the following excellent R books: An Introduction to Statistical Learning (ISLR) Stat

Gitony 5 Jun 21, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Flipper Zero documentation repo

Flipper Zero Docs Participation To fix a bug or add something new to this repository, you need to open a pull-request. Also, on every page of the site

Flipper Zero (All Repositories will be public soon) 114 Dec 30, 2022