Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Overview

Introduction

This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test my code with Minigame, Simple64 map of PySC2. However, I am sure this code will work at more large scale game if network size is grown.

I am going to implement the IMPALA method soon for training the full game using RL.

Reference

  1. Download replay file(4.8.2 version file is needed): https://github.com/Blizzard/s2client-proto/tree/master/samples/replay-api
  2. Extracting observation, action from replay file: https://github.com/narhen/pysc2-replay
  3. FullyConv model of Tensorflow 1 version: https://github.com/simonmeister/pysc2-rl-agents
  4. Supervised Learning technique: https://github.com/metataro/sc2_imitation_learning/tree/8dca03e9be92e2d8297a4bc34248939af5c7ec3b

Version

Python

  1. Python3
  2. PySC2 3.0.0: https://github.com/deepmind/pysc2
  3. Tensorflow-gpu 2.3.0
  4. Tensorflow-probability 0.11.0
  5. Hickle 4.0.4
  6. Pygame 1.9.6
  7. Sklearn

Starcraft2

  1. Client 4.8.2: https://github.com/Blizzard/s2client-proto#downloads
  2. Replay 4.8.2

PC capaticy

  1. One NVIDIA Titan V
  2. 32GB RAM

Network architecture

Notice

There may be a minor error such a GPU setting, and network size. However, you can run it without major modification because I check that latest code works for Superviesed, Reinforcment Learning. It is not easy to check every part of code because it is huge.

Supervised Learning

I can only check that model with LSTM works well in Supervised Learning. FullyConv model does not show good performance yet although it fast then LSTM model for training.

Simple64

To implement AlphaStar susuccessfully, Supervised Training is crucial. Instead of using the existing replay data to check simple network of mine, I collect amount of 1000 number of replay files in Simple64 map using only Terran, and Marine rush from two Barrack with Random race opponent.

First, change a Starcraft2 replay file to hkl file format for fast training. It will remove a step of no_op action except when it is occured at first, end of episode and 8 dividble step. You need a around 80GB disk space to convert number of around 1000 replay files to hkl. Current, I only use replay file of Terran vs Terran.

$ python trajectory_generator.py --replay_path [your path]/StarCraftII/Replays/local_Simple64/ --saving_path [your path]/pysc2_dataset/simple64

After making hkl file of replay in your workspace, try to start the Supervised Learning using below command. It will save a trained model under Models folder of your workspace.

$ python run_supervised_learning.py --workspace_path [your path]/AlphaStar_Implementation/ --model_name alphastar --training True --gpu_use True --learning_rate 0.0001 --replay_hkl_file_path [your path]/pysc2_dataset/simple64/ --environment Simple64 --model_name alphastar

You can check training progress using Tensorboard under tensorboard folder of your workspace. It will take very long time to finish training becasue of vast of observation and action space.

Below is code for evaluating trained model

python run_evaluation.py --workspace_path [your path]/AlphaStar_Implementation/ --gpu_use True --visualize True --environment Simple64 --pretrained_model supervised_model

Video of downisde is one of behavior example of trained agent.

Supervised Learning demo Click to Watch!

I only use a replay file of Terran vs Terran case. Therefore, agent only need to recognize 19 unit during game. It can make the size of model do not need to become huge. Total unit number of Starcraft 2 is over 100 in full game case. For that, we need more powerful GPU to run.

Reinforcement Learning

I can only check that FullyConv works well in Reinforcement Learning. Model with LSTM takes too much time for training and does not show better performance than FullyConv yet.

MoveToBeacon

First, let's test the sample code for MoveToBeacon environment which is the simplest environment in PySC2 using model which has similar network structure as AlphaStar. First, run 'git clone https://github.com/kimbring2/AlphaStar_Implementation.git' command in your workspace. Next, start training by using below command.

$ python run_reinforcement_learning.py --workspace_path [your path]/AlphaStar_Implementation/ --training True --gpu_use True --save_model True --num_worker 5 --model_name alphastar

I provide a FullyConv, AlphaStar style model. You can change a model by using the model_name argument. Default is FullyConv model.

After the training is completed, test it using the following command. Training performance is based on two parameter. Try to use a 1.0 as the gradient_clipping and 0.0001 as the learning_rate. Futhermore, trarning progress and result are depends on the seed value. Model is automatically saved if the average reward is over 5.0.

Gradient clipping is essential for training the model of PySC2 because it has multiple stae encoder, action head network. In my experience, gradient norm value is changed based on network size. Therefore, you should check it everytime you change model structure. You can check it by using 'tf.linalg.global_norm' function.

grads = tape.gradient(loss, model.trainable_variables)
grad_norm = tf.linalg.global_norm(grads)
tf.print("grad_norm: ", grad_norm)
grads, _ = tf.clip_by_global_norm(grads, arguments.gradient_clipping)

Afater checking norm value, you should remove an outlier value among them.

After training against various parameter, I can obtain the following graph of average score.

After finishing training, run below command to test pretrained model that was saved under Models folder of workspace.

$ python run_evaluation.py --environment Simple64 --workspace_path [your path]/AlphaStar_Implementation --visualize True --model_name alphastar --pretrained_model reinforcement_model

If the accumulated reward is over 20 per episode, you can see the Marine follow the beacon well.

Detailed information

I am writing explanation for code at Medium as series.

  1. Tutorial about Replay file: https://medium.com/@dohyeongkim/alphastar-implementation-serie-part1-606572ddba99
  2. Tutorial about Network: https://dohyeongkim.medium.com/alphastar-implementation-series-part5-fd275bea68b5
  3. Tutorial about Reinforcement Learning: https://medium.com/nerd-for-tech/alphastar-implementation-series-part6-4044e7efb1ce
  4. Tutorial about Supervised Learning: https://dohyeongkim.medium.com/alphastar-implementation-series-part7-d28468c07739

License

Apache License 2.0

Comments
  • Map 'mini_games\MoveToBeacon.SC2Map' not found.

    Map 'mini_games\MoveToBeacon.SC2Map' not found.

    run this project,There is a problem:‘Map 'mini_games\MoveToBeacon.SC2Map' not found.’ I'm sorry to bother you, but I don't know why. Hope you can answer .Thanks

    opened by ashaokai123 6
  • Failed on running trajectory_generator.py: RuntimeError SC2_x64

    Failed on running trajectory_generator.py: RuntimeError SC2_x64

    when I tried to run python trajectory_generator.py, I got error messages below and got nothing in the saving_path pysc2_dataset/simple64.

    RuntimeError: Trying to run '/home/auto/StarCraftII/Versions/Base71663/SC2_x64', but it isn't executable.

    opened by mlx3223mlx 3
  • Failed on running trajectory_generator.py: Could not find map name

    Failed on running trajectory_generator.py: Could not find map name

    I did download replay files from : https://drive.google.com/drive/folders/1lqb__ubLKLfw4Jiig6KsO-D0e_wrnGWk?usp=sharing, but when I tried to run python trajectory_generator.py --replay_path [your path]/StarCraftII/Replays/local_Simple64/ --saving_path [your path]/pysc2_dataset/simple64, I got error messages below and got nothing in the saving_path pysc2_dataset/simple64.

    OpenGL initialized! Listening on: 127.0.0.1:18148 Startup Phase 3 complete. Ready for commands. ConnectHandler: Request from 127.0.0.1:37386 accepted ReadyHandler: 127.0.0.1:37386 ready Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay Configuring interface options Configure: raw interface enabled Configure: feature layer interface enabled Configure: score interface enabled Configure: render interface disabled Launching next game. Next launch phase started: 2 Next launch phase started: 3 Next launch phase started: 4 Next launch phase started: 5 Next launch phase started: 6 Next launch phase started: 7 Next launch phase started: 8 Starting replay 'TempStartReplay.SC2Replay' Game has started. Using default stable ids, none found at: /home/dev/SC2.4.8.2/StarCraftII/stableid.json Successfully loaded stable ids: GameData\stableid.json Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay player1_race fail Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay Configuring interface options Configure: raw interface enabled Configure: feature layer interface enabled Configure: score interface enabled Configure: render interface disabled Launching next game. Next launch phase started: 2 Next launch phase started: 3 Next launch phase started: 4 Next launch phase started: 5 Next launch phase started: 6 Next launch phase started: 7 Next launch phase started: 8 Starting replay 'TempStartReplay.SC2Replay' Game has started. Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay player1_race fail Could not find map name for file: /tmp/sc-k92ku45y/StarCraft II/TempReplayInfo.SC2Replay

    OS version is ubuntu16.04, python version is 3.7.7 and other dependencies are installed according to README.

    opened by zhang-yingping 3
  • about the spatial encoder

    about the spatial encoder

    according https://ychai.uk/notes/2019/07/21/RL/DRL/Decipher-AlphaStar-on-StarCraft-II/ , the spatial encoder may be not consistant with the description of the paper presented below:

    Spatial encoder Inputs: map, entity_embeddings Outputs: embedded_spatial - A 1D tensor of the embedded map map_skip - output tensors of intermediate computation, used for skip connections. map: add two features

    cameral: whether a location is inside/outside the virtual camera; scattered entities. Pass entity_embeddings through a size 32 conv1D followed by a ReLU, then scattered into a map layer so that the 32 vector at a specific location corresponds to the units placed there. Concatenated all planes including camera, scattered_entities, vasibility, entity_owners, buildable, etc. Project to 32 channels by 2D conv with kernel size 1, followed by a ReLU. Then downsampled from 128x128 to 16x16 through 3 conv2D and ReLUs with different channel sizes (i.e., 64, 128, and 128).

    embedded_spatial: The ResBlock output is embedded into a 1D tensor of size 256 by a MLP and a ReLU.

    opened by SongleChen2015 1
  • Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

    Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

    Hi there,

    When I ran the reinforcement learning, the program was interrupted with the exit code 137 (interrupted by signal 9: SIGKILL),

    I found that the memory of the RAM was increasing in the Reinforcement Learning training process, and the training was interrupted when the memory was over 100%.

    Step 320 image

    Step 400 image

    Thank you for your help.

    opened by HenryCY 0
  • IndexError: list index out of range

    IndexError: list index out of range

    Traceback (most recent call last): File "C:\Users\JACK\Desktop\AlphaStar_Implementation\run_reinforcement_learning.py", line 77, in tf.config.experimental.set_memory_growth(physical_devices[0], True) IndexError: list index out of range

    opened by JBX2010 0
Releases(v1.0.0)
Owner
Dohyeong Kim
Researchers interested in creating agents that behave like humans using Deep Learning
Dohyeong Kim
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022