This repository contains the source code of our work on designing efficient CNNs for computer vision

Overview

Efficient networks for Computer Vision

This repo contains source code of our work on designing efficient networks for different computer vision tasks: (1) Image classification, (2) Object detection, and (3) Semantic segmentation.

Real-time semantic segmentation using ESPNetv2 on iPhone7. See here for iOS application source code using COREML.
Seg demo on iPhone7 Seg demo on iPhone7
Real-time object detection using ESPNetv2
Demo 1
Demo 2 Demo 3

Table of contents

  1. Key highlihgts
  2. Supported networks
  3. Relevant papers
  4. Blogs
  5. Performance comparison
  6. Training receipe
  7. Instructions for segmentation and detection demos
  8. Citation
  9. License
  10. Acknowledgements
  11. Contributions
  12. Notes

Key highlights

  • Object classification on the ImageNet and MS-COCO (multi-label)
  • Semantic Segmentation on the PASCAL VOC and the CityScapes
  • Object Detection on the PASCAL VOC and the MS-COCO
  • Supports PyTorch 1.0
  • Integrated with Tensorboard for easy visualization of training logs.
  • Scripts for downloading different datasets.
  • Semantic segmentation application using ESPNetv2 on iPhone can be found here.

Supported networks

This repo supports following networks:

  • ESPNetv2 (Classification, Segmentation, Detection)
  • DiCENet (Classification, Segmentation, Detection)
  • ShuffleNetv2 (Classification)

Relevant papers

Blogs

Performance comparison

ImageNet

Below figure compares the performance of DiCENet with other efficient networks on the ImageNet dataset. DiCENet outperforms all existing efficient networks, including MobileNetv2 and ShuffleNetv2. More details here

DiCENet performance on the ImageNet

Object detection

Below table compares the performance of our architecture with other detection networks on the MS-COCO dataset. Our network is fast and accurate. More details here

MSCOCO
Image Size FLOPs mIOU FPS
SSD-VGG 512x512 100 B 26.8 19
YOLOv2 544x544 17.5 B 21.6 40
ESPNetv2-SSD (Ours) 512x512 3.2 B 24.54 35

Semantic Segmentation

Below figure compares the performance of ESPNet and ESPNetv2 on two different datasets. Note that ESPNets are one of the first efficient networks that delivers competitive performance to existing networks on the PASCAL VOC dataset, even with low resolution images say 256x256. See here for more details.

Cityscapes PASCAL VOC 2012
Image Size FLOPs mIOU Image Size FLOPs mIOU
ESPNet 1024x512 4.5 B 60.3 512x512 2.2 B 63
ESPNetv2 1024x512 2.7 B 66.2 384x384 0.76 B 68

Training Receipe

Image Classification

Details about training and testing are provided here.

Details about performance of different models are provided here.

Semantic segmentation

Details about training and testing are provided here.

Details about performance of different models are provided here.

Object Detection

Details about training and testing are provided here.

Details about performance of different models are provided here.

Instructions for segmentation and detection demos

To run the segmentation demo, just type:

python segmentation_demo.py

To run the detection demo, run the following command:

python detection_demo.py

OR 

python detection_demo.py --live

For other supported arguments, please see the corresponding files.

Citation

If you find this repository helpful, please feel free to cite our work:

@article{mehta2019dicenet,
Author = {Sachin Mehta and Hannaneh Hajishirzi and Mohammad Rastegari},
Title = {DiCENet: Dimension-wise Convolutions for Efficient Networks},
Year = {2020},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
}

@inproceedings{mehta2018espnetv2,
  title={ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network},
  author={Mehta, Sachin and Rastegari, Mohammad and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2019}
}

@inproceedings{mehta2018espnet,
  title={Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation},
  author={Mehta, Sachin and Rastegari, Mohammad and Caspi, Anat and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={552--568},
  year={2018}
}

License

By downloading this software, you acknowledge that you agree to the terms and conditions given here.

Acknowledgements

Most of our object detection code is adapted from SSD in pytorch. We thank authors for such an amazing work.

Want to help out?

Thanks for your interest in our work :).

Open tasks that are interesting:

  • Tensorflow implementation. I kind of wanna do this but not getting enough time. If you are interested, drop a message and we can talk about it.
  • Optimizing the EESP and the DiceNet block at CUDA-level.
  • Optimize and port pretrained models across multiple mobile platforms, including Android.
  • Other thoughts are also welcome :).

Notes

Notes about DiCENet paper

This repository contains DiCENet's source code in PyTorch only and you should be able to reproduce the results of v1/v2 of our arxiv paper. To reproduce the results of our T-PAMI paper, you need to incorporate MobileNet tricks in Section 5.3, which are currently not a part of this repository.

Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021