Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Related tags

Deep LearningIFC
Overview

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Paper

Video Instance Segmentation using Inter-Frame Communication Transformers

Note

Steps

  1. Installation.

Install YouTube-VIS API following the link.
Install the repository by the following command. Follow Detectron2 for details.

git clone https://github.com/sukjunhwang/IFC.git
cd IFC
pip install -e .
  1. Link datasets

COCO

mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017

YTVIS 2019

mkdir -p datasets/ytvis_2019
ln -s /path_to_ytvis2019_dataset datasets/ytvis_2019

We expect ytvis_2019 folder to be like

└── ytvis_2019
    ├── train
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── valid
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── test
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── train.json
    ├── valid.json
    └── test.json

Training w/ 8 GPUs (if using AdamW and trying to change the batch size, please refer to https://arxiv.org/abs/1711.00489)

  • Our suggestion is to use 8 GPUs.
  • Pretraining on COCO requires >= 16G GPU memory, while finetuning on YTVIS requires less.
python projects/IFC/train_net.py --num-gpus 8 \
    --config-file projects/IFC/configs/base_ytvis.yaml \
    MODEL.WEIGHTS path/to/model.pth

Evaluating on YTVIS 2019.
We support multi-gpu evaluation and $F_NUM denotes the window size.

python projects/IFC/train_net.py --num-gpus 8 --eval-only \
    --config-file projects/IFC/configs/base_ytvis.yaml \
    MODEL.WEIGHTS path/to/model.pth \
    INPUT.SAMPLING_FRAME_NUM $F_NUM

Model Checkpoints (YTVIS 2019)

Due to the small size of YTVIS dataset, the scores may fluctuate even if retrained with the same configuration.

Note: The provided checkpoints are the ones with highest accuracies from multiple training attempts. If you are planning to cite IFC and its scores, we suggest you to refer to the average scores reported in camera-ready version of NeurIPS.

backbone stride FPS AP AP50 AP75 AR1 AR10 download
ResNet-50 T=5
T=36
46.5
107.1
41.6
42.8
63.2
65.8
45.6
46.8
43.6
43.8
53.0
51.2
model | results
ResNet-101 T=36 89.4 44.6 69.2 49.5 44.0 52.1 model | results

License

IFC is released under the Apache 2.0 license.

Citing

If our work is useful in your project, please consider citing us.

@article{hwang2021video,
  title   = {Video Instance Segmentation using Inter-Frame Communication Transformers},
  author  = {Hwang, Sukjun and Heo, Miran and Oh, Seoung Wug and Kim, Seon Joo},
  journal = {arXiv preprint arXiv:2106.03299},
  year    = {2021}
}

Acknowledgement

We highly appreciate all previous works that influenced our project.
Special thanks to facebookresearch for their wonderful codes that have been publicly released (detectron2, DETR).

Owner
Sukjun Hwang
Computer vision via deep learning.
Sukjun Hwang
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022