Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

Overview

FL Analysis

This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness" submitted to EMSE journal.

Replication

Main experiment

All experiments are done using python 3.8 and TensorFlow 2.4

Steps to run the experiments are as follows:

  1. The options for each configuration are set in JSON file which should be in the root directory by default. However, this can be changed using the environment variable CONFIG_PATH.

  2. The paths for the output and the processed ADNI dataset is set using the environment variables RESULTS_ROOT and ADNI_ROOT respectively. If these variables are not set the mentioned paths will use "./results" and "./adni" as default.

  3. Run the main program by python test.py

  • Note that the results will be overwritten if same config is run for multiple time. To avoid that RESULTS_ROOT can be changed at each run.

Config details

The config file can have the following options:

    "dataset": one of the following 
      "adni"
      "mnist"
      "cifar"
    "aggregator": one of the following 
      "fed-avg"
      "median"
      "trimmed-mean"
      "krum"
      "combine"
    "attack": one of the following
      "label-flip"
      "noise-data"
      "overlap-data"
      "delete-data"
      "unbalance-data"
      "random-update"
      "sign-flip"
      "backdoor"
    "attack-fraction": a float between 0 and 1
    "non-iid-deg": a float between 0 and 1
    "num-rounds": an integer value

Notes:

  1. attack field is optional. If it is not present, no attack will be applied and attack-fraction is not necessary.
  2. If dataset is set to adni, non-iid-deg field is not necessary
  3. The aggregator field is optional and if it is not present it will use the default fed-avg.
  4. All configurations used in our experiments are available in configs folder

ADNI dataset

ADNI dataset is not included in the repository due to user agreements, but information about it is available in www.adni-info.org.

Once the dataset is available, data can be processed with extract_central_axial_slices_adni.ipynb

Results Visualization

Results can be visualized using the visualizer.ipynb.

  • The root folder of the results should be set in the notebook before running.
  • Visualizations will be saved in the root folder under 0images folder.
  • The visualizer expects the root sub folders to be the results of the different runs.

An example:


_root
├── _run1
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
├── _run2
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
└── _run3
    ├── cifar-0--fedavg--clean
    └── cifar-0--krum--clean


Results

All results are available in the results folder (ADNI, CIFAR, Fashion MNIST, Ensemble). Each sub folder that represents a dataset contains the details of runs, plus processed visualizations and raw csv files in a folder called 0images.

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023