Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

Overview

face-mask-detection

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scripts that provides training new model, testing model with specific images and live face mask detection.
The gif below shows how live face mask detection works.

Result gif

This model has trained with 10k face images (5k without mask and 5k with mask - dataset sources are mentioned in dataset section) using 3 layers of 2d CNN as main process. (the complete summary of model layers is given below)
Model: "sequential"                                               
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
rescaling (Rescaling)        (None, 180, 180, 3)       0          
_________________________________________________________________ 
conv2d (Conv2D)              (None, 180, 180, 16)      448        
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 90, 90, 16)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)            (None, 90, 90, 32)        4640       
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 (None, 45, 45, 32)        0          
_________________________________________________________________ 
conv2d_2 (Conv2D)            (None, 45, 45, 64)        18496      
_________________________________________________________________ 
max_pooling2d_2 (MaxPooling2 (None, 22, 22, 64)        0          
_________________________________________________________________ 
flatten (Flatten)            (None, 30976)             0          
_________________________________________________________________ 
dense (Dense)                (None, 128)               3965056    
_________________________________________________________________ 
dense_1 (Dense)              (None, 2)                 258        
================================================================= 
Total params: 3,988,898                                           
Trainable params: 3,988,898                                       
Non-trainable params: 0                                           
_________________________________________________________________ 

This model has reached fantastic result of 0.9990 accuracy with test dataset( 20% ). moreover, it only takes 10 epochs to reach this result. As the graph below illustrates, from the very first epoch, accuracy is more than 0.98 and by 10th epoch, loss roughly touchs 10e-7 that is a great result.

loss_acc

usage

Currently, there is not any argument parser available, so if you want change any default variable, you can change variables in configurations section at the begining of each script. schema is given below.

DATASET_PATH = "./dataset/" # to provide dataset, create a directory containing all classes as a directory
# and put images to relevant class. ex:
# dataset --> no_mask --> img1, img2, ...
#             correct_mask --> img1, img2, ...
OUTPUT_MODEL_PATH = 'saved_model/my_model' # output file to save model
OUTPUT_WEIGHTS_PATH = 'saved_weight/my_checkpoint2' # output file to save model's weights
EPOCHS = 10 # number of epochs
BATCH_SIZE = 32 # bach size
IMG_HEIGHT = 180 # image height
IMG_WIDTH = 180 # image width

To train a new model, after changing the configuration above, just run:

python train_model.py

To test the trained model with some specific images, run:

python test_model.py img1.jpg img2.jpg ....

At last, to run live detection mode, run:

python live_detection.py

dataset

The dataset we have used, is the combination of Flickr-Faces-HQ (FFHQ) dataset and MaskedFace-Net dataset. 5k images from each dataset. (summation of both datasets is more than 180k images)

You might also like...
Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Releases(v0.1)
Owner
amirsalar
amirsalar
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022