Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

Overview

face-mask-detection

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scripts that provides training new model, testing model with specific images and live face mask detection.
The gif below shows how live face mask detection works.

Result gif

This model has trained with 10k face images (5k without mask and 5k with mask - dataset sources are mentioned in dataset section) using 3 layers of 2d CNN as main process. (the complete summary of model layers is given below)
Model: "sequential"                                               
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
rescaling (Rescaling)        (None, 180, 180, 3)       0          
_________________________________________________________________ 
conv2d (Conv2D)              (None, 180, 180, 16)      448        
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 90, 90, 16)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)            (None, 90, 90, 32)        4640       
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 (None, 45, 45, 32)        0          
_________________________________________________________________ 
conv2d_2 (Conv2D)            (None, 45, 45, 64)        18496      
_________________________________________________________________ 
max_pooling2d_2 (MaxPooling2 (None, 22, 22, 64)        0          
_________________________________________________________________ 
flatten (Flatten)            (None, 30976)             0          
_________________________________________________________________ 
dense (Dense)                (None, 128)               3965056    
_________________________________________________________________ 
dense_1 (Dense)              (None, 2)                 258        
================================================================= 
Total params: 3,988,898                                           
Trainable params: 3,988,898                                       
Non-trainable params: 0                                           
_________________________________________________________________ 

This model has reached fantastic result of 0.9990 accuracy with test dataset( 20% ). moreover, it only takes 10 epochs to reach this result. As the graph below illustrates, from the very first epoch, accuracy is more than 0.98 and by 10th epoch, loss roughly touchs 10e-7 that is a great result.

loss_acc

usage

Currently, there is not any argument parser available, so if you want change any default variable, you can change variables in configurations section at the begining of each script. schema is given below.

DATASET_PATH = "./dataset/" # to provide dataset, create a directory containing all classes as a directory
# and put images to relevant class. ex:
# dataset --> no_mask --> img1, img2, ...
#             correct_mask --> img1, img2, ...
OUTPUT_MODEL_PATH = 'saved_model/my_model' # output file to save model
OUTPUT_WEIGHTS_PATH = 'saved_weight/my_checkpoint2' # output file to save model's weights
EPOCHS = 10 # number of epochs
BATCH_SIZE = 32 # bach size
IMG_HEIGHT = 180 # image height
IMG_WIDTH = 180 # image width

To train a new model, after changing the configuration above, just run:

python train_model.py

To test the trained model with some specific images, run:

python test_model.py img1.jpg img2.jpg ....

At last, to run live detection mode, run:

python live_detection.py

dataset

The dataset we have used, is the combination of Flickr-Faces-HQ (FFHQ) dataset and MaskedFace-Net dataset. 5k images from each dataset. (summation of both datasets is more than 180k images)

You might also like...
Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Releases(v0.1)
Owner
amirsalar
amirsalar
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022