AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Overview

AdelaiDet

AdelaiDet is an open source toolbox for multiple instance-level recognition tasks on top of Detectron2. All instance-level recognition works from our group are open-sourced here.

To date, AdelaiDet implements the following algorithms:

Models

COCO Object Detecton Baselines with FCOS

Name inf. time box AP download
FCOS_R_50_1x 16 FPS 38.7 model
FCOS_MS_R_101_2x 12 FPS 43.1 model
FCOS_MS_X_101_32x8d_2x 6.6 FPS 43.9 model
FCOS_MS_X_101_32x8d_dcnv2_2x 4.6 FPS 46.6 model
FCOS_RT_MS_DLA_34_4x_shtw 52 FPS 39.1 model

More models can be found in FCOS README.md.

COCO Instance Segmentation Baselines with BlendMask

Model Name inf. time box AP mask AP download
Mask R-CNN R_101_3x 10 FPS 42.9 38.6
BlendMask R_101_3x 11 FPS 44.8 39.5 model
BlendMask R_101_dcni3_5x 10 FPS 46.8 41.1 model

For more models and information, please refer to BlendMask README.md.

COCO Instance Segmentation Baselines with MEInst

Name inf. time box AP mask AP download
MEInst_R_50_3x 12 FPS 43.6 34.5 model

For more models and information, please refer to MEInst README.md.

Total_Text results with ABCNet

Name inf. time e2e-hmean det-hmean download
v1-totaltext 11 FPS 67.1 86.0 model
v2-totaltext 7.7 FPS 71.8 87.2 model

For more models and information, please refer to ABCNet README.md.

COCO Instance Segmentation Baselines with CondInst

Name inf. time box AP mask AP download
CondInst_MS_R_50_1x 14 FPS 39.7 35.7 model
CondInst_MS_R_50_BiFPN_3x_sem 13 FPS 44.7 39.4 model
CondInst_MS_R_101_3x 11 FPS 43.3 38.6 model
CondInst_MS_R_101_BiFPN_3x_sem 10 FPS 45.7 40.2 model

For more models and information, please refer to CondInst README.md.

Note that:

  • Inference time for all projects is measured on a NVIDIA 1080Ti with batch size 1.
  • APs are evaluated on COCO2017 val split unless specified.

Installation

First install Detectron2 following the official guide: INSTALL.md.

Please use Detectron2 with commit id 9eb4831 if you have any issues related to Detectron2.

Then build AdelaiDet with:

git clone https://github.com/aim-uofa/AdelaiDet.git
cd AdelaiDet
python setup.py build develop

If you are using docker, a pre-built image can be pulled with:

docker pull tianzhi0549/adet:latest

Some projects may require special setup, please follow their own README.md in configs.

Quick Start

Inference with Pre-trained Models

  1. Pick a model and its config file, for example, fcos_R_50_1x.yaml.
  2. Download the model wget https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download -O fcos_R_50_1x.pth
  3. Run the demo with
python demo/demo.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --input input1.jpg input2.jpg \
    --opts MODEL.WEIGHTS fcos_R_50_1x.pth

Train Your Own Models

To train a model with "train_net.py", first setup the corresponding datasets following datasets/README.md, then run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x

To evaluate the model after training, run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --eval-only \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x \
    MODEL.WEIGHTS training_dir/fcos_R_50_1x/model_final.pth

Note that:

  • The configs are made for 8-GPU training. To train on another number of GPUs, change the --num-gpus.
  • If you want to measure the inference time, please change --num-gpus to 1.
  • We set OMP_NUM_THREADS=1 by default, which achieves the best speed on our machines, please change it as needed.
  • This quick start is made for FCOS. If you are using other projects, please check the projects' own README.md in configs.

Acknowledgements

The authors are grateful to Nvidia, Huawei Noah's Ark Lab, ByteDance, Adobe who generously donated GPU computing in the past a few years.

Citing AdelaiDet

If you use this toolbox in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@misc{tian2019adelaidet,
  author =       {Tian, Zhi and Chen, Hao and Wang, Xinlong and Liu, Yuliang and Shen, Chunhua},
  title =        {{AdelaiDet}: A Toolbox for Instance-level Recognition Tasks},
  howpublished = {\url{https://git.io/adelaidet}},
  year =         {2019}
}

and relevant publications:

@inproceedings{tian2019fcos,
  title     =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year      =  {2019}
}

@article{tian2021fcos,
  title   =  {{FCOS}: A Simple and Strong Anchor-free Object Detector},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@inproceedings{chen2020blendmask,
  title     =  {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation},
  author    =  {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{zhang2020MEInst,
  title     =  {Mask Encoding for Single Shot Instance Segmentation},
  author    =  {Zhang, Rufeng and Tian, Zhi and Shen, Chunhua and You, Mingyu and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{liu2020abcnet,
  title     =  {{ABCNet}: Real-time Scene Text Spotting with Adaptive {B}ezier-Curve Network},
  author    =  {Liu, Yuliang and Chen, Hao and Shen, Chunhua and He, Tong and Jin, Lianwen and Wang, Liangwei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@ARTICLE{9525302,
  author={Liu, Yuliang and Shen, Chunhua and Jin, Lianwen and He, Tong and Chen, Peng and Liu, Chongyu and Chen, Hao},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={ABCNet v2: Adaptive Bezier-Curve Network for Real-time End-to-end Text Spotting}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3107437}
}
  

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@inproceedings{wang2020solov2,
  title     =  {{SOLOv2}: Dynamic and Fast Instance Segmentation},
  author    =  {Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua},
  booktitle =  {Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year      =  {2020}
}

@article{wang2021solo,
  title   =  {{SOLO}: A Simple Framework for Instance Segmentation},
  author  =  {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@article{tian2019directpose,
  title   =  {{DirectPose}: Direct End-to-End Multi-Person Pose Estimation},
  author  =  {Tian, Zhi and Chen, Hao and Shen, Chunhua},
  journal =  {arXiv preprint arXiv:1911.07451},
  year    =  {2019}
}

@inproceedings{tian2020conditional,
  title     =  {Conditional Convolutions for Instance Segmentation},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@inproceedings{tian2021boxinst,
  title     =  {{BoxInst}: High-Performance Instance Segmentation with Box Annotations},
  author    =  {Tian, Zhi and Shen, Chunhua and Wang, Xinlong and Chen, Hao},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2021}
}

@inproceedings{wang2021densecl,
  title     =   {Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author    =   {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

@inproceedings{Mao2021pose,
  title     =   {{FCPose}: Fully Convolutional Multi-Person Pose Estimation With Dynamic Instance-Aware Convolutions},
  author    =   {Mao, Weian and  Tian, Zhi  and Wang, Xinlong  and Shen, Chunhua},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Chunhua Shen.

Owner
Adelaide Intelligent Machines (AIM) Group
Adelaide Intelligent Machines (AIM) Group
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022