PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Overview

Soft DTW Loss Function for PyTorch in CUDA

This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch supported computation, CUDA-friendly, and feasible to use as a final loss. I can confirm that you can train a (sequential) model with this as a final loss! The following image shows training logs of a TTS model using the Soft-DTW Loss Function.

There are some previous implementations:

  1. mblondel's soft-dtw
  2. lyprince's sdtw_pytorch
  3. Maghoumi's pytorch-softdtw-cuda

But they are either not supported by CUDA-friendly batch computation or not considering the jacobean w.r.t input matrix, which is necessary to be used as a final loss in recent deep learning frameworks. In the current implementation, all conditions are satisfied.

Usage

Same as Maghoumi's pytorch-softdtw-cuda:

from sdtw_cuda_loss import SoftDTW

# Create the sequences
batch_size, len_x, len_y, dims = 8, 15, 12, 5
x = torch.rand((batch_size, len_x, dims), requires_grad=True)
y = torch.rand((batch_size, len_y, dims))

# Create the "criterion" object
sdtw = SoftDTW(use_cuda=True, gamma=0.1)

# Compute the loss value
loss = sdtw(x, y)  # Just like any torch.nn.xyzLoss()

# Aggregate and call backward()
loss.mean().backward()

But the backward will compute the gradient w.r.t input target sequence x (which is not considered in the previous work).

Note

In the current implementation, only use_cuda=True is supported. But you can easily implement the CPU version as in Maghoumi's pytorch-softdtw-cuda.

Citation

@misc{lee2021soft_dtw_loss,
  author = {Lee, Keon},
  title = {Soft-DTW-Loss},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/Soft-DTW-Loss}}
}
You might also like...
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

[CVPR 2022] Official code for the paper:
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Comments
  • Does this supports multi-gpu training?

    Does this supports multi-gpu training?

    Thanks for sharing impl of soft-dtw, I can use it in single-gpu env,but can't use it in multi-gpu envs.Currently, it doesn't support multi-gpu training?

    opened by mayfool 2
  • how to use dtw-loss to fit a curve?

    how to use dtw-loss to fit a curve?

    hello, I tried to fit a curve (discrete points) using Soft-DTW-Loss as a loss function. But the loss does not converge to the exact result in the end. Is there something wrong with the way I am using it? The code is as follows:

    if name == "main":

    batch_size = 1
    len_x = 15
    len_predict = 10
    dims = 1
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    x = torch.unsqueeze(torch.linspace(1, 4, steps=len_x, requires_grad=True), dim=0)
    y = x ** 2
    y = y.view(1, len_x, 1)
    x = x.view(1, len_x, 1)
    
    #(batch,length,dims)---->(1,15,2)
    truth_points = torch.cat((y, x), dim=2).cuda()
    
    #(1,20)
    input = torch.unsqueeze(torch.linspace(1, 4, steps=len_predict*2, requires_grad=True), dim=0).cuda()
    
    
    class testNN(torch.nn.Module):
        def __init__(self):
            super(testNN, self).__init__()
            self.layer = nn.Sequential(
                nn.Linear(20, 50),
                nn.ReLU(),
                nn.Linear(50, 200),
                nn.ReLU(),
                nn.Linear(200, 50),
                nn.ReLU(),
                nn.Linear(50, 20),
                nn.ReLU(),
            )
        def forward(self, x):
            x = self.layer(x)
            return x
    
    
    test = testNN()
    test = test.to(device)
    
    loss_function = SoftDTW(use_cuda=True, gamma=0.01, normalize=False)
    optimizer = torch.optim.Adam(test.parameters(), lr=0.01)
    
    
    for epoch in range(1000):
    
    
        predict = test(input)
        #(1,20) reshape to (1,10,2)
        predict = predict.reshape(1, len_predict, 2)
        loss = loss_function(predict, truth_points)
        optimizer.zero_grad()
        loss.mean().backward(retain_graph=True)
        optimizer.step()
    
    
        if epoch % 10 == 0:
            print("epoch : %d | loss : %f" % (epoch, loss))
            plt_predict = predict.cpu().detach().numpy()
            # print(plt_predict)
            plt_predict = plt_predict.reshape(1, len_predict, 2)
            print(plt_predict[0, :, 0])
            print(plt_predict[0, :, 1])
    
    opened by visionlyx 0
Releases(v1.0.0)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023