Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Overview

Self-Tuning for Data-Efficient Deep Learning

This repository contains the implementation code for paper:
Self-Tuning for Data-Efficient Deep Learning
Ximei Wang, Jinghan Gao, Mingsheng Long, Jianmin Wang
38th International Conference on Machine Learning (ICML 2021)
[Project Page] [Paper] [Video] [Slide] [Poster] [Blog] [Zhihu] [SlidesLive]


Brief Introduction for Data-Efficient Deep Learning

Mitigating the requirement for labeled data is a vital issue in deep learning community. However, common practices of TL and SSL only focus on either the pre-trained model or unlabeled data. This paper unleashes the power of both worlds by proposing a new setup named data-efficient deep learning, aims to mitigate the requirement of labeled data by unifying the exploration of labeled and unlabeled data and the transfer of pre-trained model.

To address the challenge of confirmation bias in self-training, a general Pseudo Group Contrast mechanism is devised to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. To tackle the model shift problem, we unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model, with a shared key queue beyond just 'parallel training'. Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g., it doubles the accuracy of fine-tuning on Stanford-Cars provided with 15% labels.

Dependencies

  • python3.6
  • torch == 1.3.1 (with suitable CUDA and CuDNN version)
  • torchvision == 0.4.2
  • tensorboardX
  • numpy
  • argparse

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Cifar100 https://www.cs.toronto.edu/~kriz/cifar.html
  • You can either download datasets via the above links or directly run the commands shown below to automatically download datasets as well as data lists from Tsinghua Cloud.

Disclaimer on Datasets

This open-sourced code will download and prepare public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this code, please get in touch with us through a GitHub issue. Thanks for your contribution to the ML community!

Quick Start

  • The running commands for several datasets are shown below. Please refer to run.sh for commands for datasets with other label ratios.
python src/main.py  --root ./StanfordCars --batch_size 24 --logdir vis/ --gpu_id 0 --queue_size 32 --projector_dim 1024 --backbone resnet50  --label_ratio 15 --pretrained
python src/main.py  --root ./CUB200 --batch_size 24 --logdir vis/ --gpu_id 1 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./Aircraft --batch_size 24 --logdir vis/ --gpu_id 2 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./cifar100 --batch_size 20 --logdir vis/ --gpu_id 3 --queue_size 32 --backbone efficientnet-b2 --num_labeled 10000 --expand_label --pretrained --projector_dim 1024

Tensorboard Log

Dataset Label Ratio 1 Label Ratio 2 Label Ratio 3
CUB-200-2011 15% 30% 50%
Stanford Cars 15% 30% 50%
FGVC Aircraft 15% 30% 50%
Cifar100 400 2500 10000
  • We achieved better results than that reported in the paper, after fixing some small bugs of the code.

Updates

  • [07/2021] We have created a Blog post in Chinese for this work. Check it out for more details!
  • [07/2021] We have released the code and models. You can find all reproduced checkpoints via this link.
  • [06/2021] A five minute video is released to briefly introduce the main idea of Self-Tuning.
  • [05/2021] Paper accepted to ICML 2021 as a Short Talk.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{wang2021selftuning,
  title={Self-Tuning for Data-Efficient Deep Learning},
  author={Wang, Ximei and Gao, Jinghan and Long, Mingsheng and Wang, Jianmin},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023