The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

Related tags

Deep LearningASMAGAN
Overview

ASMA-GAN

Anisotropic Stroke Control for Multiple Artists Style Transfer

Proceedings of the 28th ACM International Conference on Multimedia

The official repository with Pytorch

[Arxiv paper]

logo

title

Methodology

Framework

Dependencies

  • python3.6+
  • pytorch1.5+
  • torchvision
  • pyyaml
  • paramiko
  • pandas
  • requests
  • tensorboard
  • tensorboardX
  • tqdm

Installation

We highly recommend you to use Anaconda for installation

conda create -n ASMA python=3.6
conda activate ASMA
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
pip install pyyaml paramiko pandas requests tensorboard tensorboardX tqdm

Preparation

  • Traning dataset
    • Coming soon
  • pre-trained model
    • Download the model from Github Releases, and unzip the files to ./train_logs/

Usage

To test with pretrained model

The command line below will generate 1088*1920 HD style migration pictures of 11 painters for each picture of testImgRoot (11 painters include: Berthe Moriso , Edvard Munch, Ernst Ludwig Kirchner, Jackson Pollock, Wassily Kandinsky, Oscar-Claude Monet, Nicholas Roerich, Paul Cézanne, Pablo Picasso ,Samuel Colman, Vincent Willem van Gogh. The output image(s) can be found in ./test_logs/ASMAfinal/

  • Example of style transfer with all 11 artists style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle -1 
  • Example of style transfer with Pablo Picasso style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8 
  • Example of style transfer with Wassily Kandinsky style

    python main.py --mode test --cuda 0 --version ASMAfinal  --dataloader_workers 8   --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 4

--version refers to the ASMAGAN training logs name.

--testImgRoot can be a folder with images or the path of a single picture.You can assign the image(s) you want to perform style transfer to this argument.

--specify_sytle is used to specify which painter's style is used for style transfer. When the value is -1, 11 painters' styles are used for image(s) respectively for style transfer. The values corresponding to each painter's style are as follows [0: Berthe Moriso, 1: Edvard Munch, 2: Ernst Ludwig Kirchner, 3: Jackson Pollock, 4: Wassily Kandinsky, 5: Oscar-Claude Monet, 6: Nicholas Roerich, 7: Paul Cézanne, 8: Pablo Picasso, 9 : Samuel Colman, 10: Vincent Willem van Gogh]

Training

Coming soon

To cite our paper

@inproceedings{DBLP:conf/mm/ChenYLQN20,
  author    = {Xuanhong Chen and
               Xirui Yan and
               Naiyuan Liu and
               Ting Qiu and
               Bingbing Ni},
  title     = {Anisotropic Stroke Control for Multiple Artists Style Transfer},
  booktitle = {{MM} '20: The 28th {ACM} International Conference on Multimedia, 2020},
  publisher = {{ACM}},
  year      = {2020},
  url       = {https://doi.org/10.1145/3394171.3413770},
  doi       = {10.1145/3394171.3413770},
  timestamp = {Thu, 15 Oct 2020 16:32:08 +0200},
  biburl    = {https://dblp.org/rec/conf/mm/ChenYLQN20.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Some Results

Results1

Related Projects

Learn about our other projects [RainNet], [Sketch Generation], [CooGAN], [Knowledge Style Transfer], [SimSwap],[ASMA-GAN],[Pretrained_VGG19].

High Resolution Results

Comments
  • Can't download pre-trained model

    Can't download pre-trained model

    Hi! Could you please check your pre-trained model. The follow links is no found. Thank you https://github.com/neuralchen/ASMAGAN/releases/download/v.1.0/ASMAfinal.zip

    opened by namdn 5
  • Thank you for your great project. When will the training code be released

    Thank you for your great project. When will the training code be released

    Thank you for your great project.

    1. When will the training code be released.
    2. I want to get more painters how do I do that, how do I make the training datasets, how much data do I need
    3. Looking forward to your reply
    opened by zhanghongyong123456 5
  • Fine Tuning for single class

    Fine Tuning for single class

    Hello team, I would like to finetune your pretrained model for just five new class (total output will be five), how should I use the finetune? Thank you!

    opened by minhtcai 0
  • KeyError 1920

    KeyError 1920

    using the official command: python main.py --mode test --cuda 0 --version ASMAfinal --dataloader_workers 8 --testImgRoot ./bench/ --nodeName localhost --checkpoint 350000 --testScriptsName common_useage --specify_sytle 8

    then error happened Generator Script Name: Conditional_Generator_asm 11 classes Finished preprocessing the test dataset, total image number: 25... /home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py:332: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( Traceback (most recent call last): File "/home/ama/ASMAGAN/main.py", line 266, in tester.test() File "/home/ama/ASMAGAN/test_scripts/tester_common_useage.py", line 50, in test test_data = TestDataset(test_img,batch_size) File "/home/ama/ASMAGAN/data_tools/test_data_loader_resize.py", line 36, in init transform.append(T.Resize(1088,1920)) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/transforms.py", line 336, in init interpolation = _interpolation_modes_from_int(interpolation) File "/home/ama/anaconda3/envs/ASMA/lib/python3.9/site-packages/torchvision/transforms/functional.py", line 47, in _interpolation_modes_from_int return inverse_modes_mapping[i] KeyError: 1920

    opened by Kayce001 1
  • Change aspect ratio of images

    Change aspect ratio of images

    test code change aspect ratio of input images so output images are deformed to fix this i make some correction at "test_data_loader_resize.py"

    image

    opened by birolkuyumcu 0
  • RuntimeError: cuDNN

    RuntimeError: cuDNN

    Hi I get the following error when running the code:

    RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED when calling backward()

    I would appreciate your help on how to resolve this.

    Thank you!

    Gero

    opened by Limbicnation 8
Releases(v.1.1)
Owner
Six_God
Six_God
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022