How to Train a GAN? Tips and tricks to make GANs work

Related tags

Deep Learningganhacks
Overview

(this list is no longer maintained, and I am not sure how relevant it is in 2020)

How to Train a GAN? Tips and tricks to make GANs work

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.

Here's a link to the authors of this document

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Normalize the inputs

  • normalize the images between -1 and 1
  • Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

  • because the first formulation has vanishing gradients early on
  • Goodfellow et. al (2014)

In practice, works well:

  • Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

  • Dont sample from a Uniform distribution

cube

  • Sample from a gaussian distribution

sphere

4: BatchNorm

  • Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
  • when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

batchmix

5: Avoid Sparse Gradients: ReLU, MaxPool

  • the stability of the GAN game suffers if you have sparse gradients
  • LeakyReLU = good (in both G and D)
  • For Downsampling, use: Average Pooling, Conv2d + stride
  • For Upsampling, use: PixelShuffle, ConvTranspose2d + stride

6: Use Soft and Noisy Labels

  • Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
    • Salimans et. al. 2016
  • make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

  • Use DCGAN when you can. It works!
  • if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

  • Experience Replay
    • Keep a replay buffer of past generations and occassionally show them
    • Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
  • All stability tricks that work for deep deterministic policy gradients
  • See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

  • optim.Adam rules!
    • See Radford et. al. 2015
  • Use SGD for discriminator and ADAM for generator

10: Track failures early

  • D loss goes to 0: failure mode
  • check norms of gradients: if they are over 100 things are screwing up
  • when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
  • if loss of generator steadily decreases, then it's fooling D with garbage (says martin)

11: Dont balance loss via statistics (unless you have a good reason to)

  • Dont try to find a (number of G / number of D) schedule to uncollapse training
  • It's hard and we've all tried it.
  • If you do try it, have a principled approach to it, rather than intuition

For example

while lossD > A:
  train D
while lossG > B:
  train G

12: If you have labels, use them

  • if you have labels available, training the discriminator to also classify the samples: auxillary GANs

13: Add noise to inputs, decay over time

14: [notsure] Train discriminator more (sometimes)

  • especially when you have noise
  • hard to find a schedule of number of D iterations vs G iterations

15: [notsure] Batch Discrimination

  • Mixed results

16: Discrete variables in Conditional GANs

  • Use an Embedding layer
  • Add as additional channels to images
  • Keep embedding dimensionality low and upsample to match image channel size

17: Use Dropouts in G in both train and test phase

Authors

  • Soumith Chintala
  • Emily Denton
  • Martin Arjovsky
  • Michael Mathieu
Owner
Soumith Chintala
/\︿╱\ _________________________________ \0_ 0 /╱\╱____________________________ \▁︹_/
Soumith Chintala
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022