Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

Overview

CSE-Autoloss

Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully designed by considering diverse learning challenges (e.g. class imbalance, hard negative samples, and scale variances). Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels and finds the searched losses are insightful. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via two progressive convergence simulation modules: convergence property verification and model optimization simulation. The best-discovered loss function combinations CSE-Autoloss-A and CSE-Autoloss-B outperform default combinations (Cross-entropy/Focal loss for classification and L1 loss for regression) by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively.

The repository contains the demo training scripts for the best-searched loss combinations of our paper (ICLR2021) Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search.

Installation

Please refer to get_started.md for installation.

Get Started

Please see get_started.md for the basic usage of MMDetection.

Searched Loss

Two-Stage Best-Discovered Loss

CSE_Autoloss_A_cls='Neg(Dot(Mul(Y,Add(1,Sin(Z))),Log(Softmax(X))))'

CSE_Autoloss_A_reg='Add(1,Neg(Add(Div(I,U),Neg(Div(Add(E,Neg(Add(I,2))),E)))))'

One-Stage Best-Discovered Loss

CSE_Autoloss_B_cls='Neg(Add(Mul(Q,Mul(Add(1,Serf(Sig(NY))),Log(Sig(X)))),Mul(Add(Sgdf(X),Neg(Q)),Mul(Add(Add(1,Neg(Q)),Neg(Add(1,Neg(Sig(X))))),Log(Add(1,Neg(Sig(X))))))))'

CSE_Autoloss_B_reg='Neg(Div(Add(Div(Neg(Add(Neg(E),Add(1,I))),Neg(Add(3,Add(2,U)))),Add(Div(E,E),Div(Neg(E),Neg(1)))),Neg(Add(Div(Neg(Add(U,Div(I,1))),Neg(3)),Neg(E)))))'

[1] u, i, e, w indicate union, intersection, enclose and intersection-over-union (IoU) between bounding box prediction and groundtruth. x, y are for class prediction and label.
[2] dot is for dot product, erf is for scaled error function, gd is for scaled gudermannian function. Please see more details about "S"-shaped curve at wiki.

Performance

Performance for COCO val are as follows.

Detector Loss Bbox mAP Command
Faster R-CNN R50 CSE-Autoloss-A 38.5% Link
Faster R-CNN R101 CSE-Autoloss-A 40.2% Link
Cascade R-CNN R50 CSE-Autoloss-A 40.5% Link
Mask R-CNN R50 CSE-Autoloss-A 39.1% Link
FCOS R50 CSE-Autoloss-B 39.6% Link
ATSS R50 CSE-Autoloss-B 40.5% Link

[1] We replace the centerness_target in FCOS and ATSS to the IoU between bbox_pred and bbox_target. Please see more details at fcos_head.py and atss_head.py.

[2] For the search loss combinations, loss_bbox weight for ATSS sets to 1 (instead of 2). Please see more details here.

Quick start to train the model with searched/default loss combinations

# cls - classification, reg - regression

# Train with searched classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with searched classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --launcher pytorch;

# Train with default classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with default classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --launcher pytorch;

Acknowledgement

Thanks to MMDetection Team for their powerful deep learning detection framework. Thanks to Huawei Noah's Ark Lab AI Theory Group for their numerous V100 GPUs.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{
  liu2021loss,
  title={Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search},
  author={Peidong Liu and Gengwei Zhang and Bochao Wang and Hang Xu and Xiaodan Liang and Yong Jiang and Zhenguo Li},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=5jzlpHvvRk}
}
@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}
Owner
Peidong Liu(刘沛东)
Master Student in CS @ Tsinghua University. My research interest lies in scene understanding, visual tracking and AutoML for loss function.
Peidong Liu(刘沛东)
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023