Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

Overview

CSE-Autoloss

Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully designed by considering diverse learning challenges (e.g. class imbalance, hard negative samples, and scale variances). Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels and finds the searched losses are insightful. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via two progressive convergence simulation modules: convergence property verification and model optimization simulation. The best-discovered loss function combinations CSE-Autoloss-A and CSE-Autoloss-B outperform default combinations (Cross-entropy/Focal loss for classification and L1 loss for regression) by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively.

The repository contains the demo training scripts for the best-searched loss combinations of our paper (ICLR2021) Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search.

Installation

Please refer to get_started.md for installation.

Get Started

Please see get_started.md for the basic usage of MMDetection.

Searched Loss

Two-Stage Best-Discovered Loss

CSE_Autoloss_A_cls='Neg(Dot(Mul(Y,Add(1,Sin(Z))),Log(Softmax(X))))'

CSE_Autoloss_A_reg='Add(1,Neg(Add(Div(I,U),Neg(Div(Add(E,Neg(Add(I,2))),E)))))'

One-Stage Best-Discovered Loss

CSE_Autoloss_B_cls='Neg(Add(Mul(Q,Mul(Add(1,Serf(Sig(NY))),Log(Sig(X)))),Mul(Add(Sgdf(X),Neg(Q)),Mul(Add(Add(1,Neg(Q)),Neg(Add(1,Neg(Sig(X))))),Log(Add(1,Neg(Sig(X))))))))'

CSE_Autoloss_B_reg='Neg(Div(Add(Div(Neg(Add(Neg(E),Add(1,I))),Neg(Add(3,Add(2,U)))),Add(Div(E,E),Div(Neg(E),Neg(1)))),Neg(Add(Div(Neg(Add(U,Div(I,1))),Neg(3)),Neg(E)))))'

[1] u, i, e, w indicate union, intersection, enclose and intersection-over-union (IoU) between bounding box prediction and groundtruth. x, y are for class prediction and label.
[2] dot is for dot product, erf is for scaled error function, gd is for scaled gudermannian function. Please see more details about "S"-shaped curve at wiki.

Performance

Performance for COCO val are as follows.

Detector Loss Bbox mAP Command
Faster R-CNN R50 CSE-Autoloss-A 38.5% Link
Faster R-CNN R101 CSE-Autoloss-A 40.2% Link
Cascade R-CNN R50 CSE-Autoloss-A 40.5% Link
Mask R-CNN R50 CSE-Autoloss-A 39.1% Link
FCOS R50 CSE-Autoloss-B 39.6% Link
ATSS R50 CSE-Autoloss-B 40.5% Link

[1] We replace the centerness_target in FCOS and ATSS to the IoU between bbox_pred and bbox_target. Please see more details at fcos_head.py and atss_head.py.

[2] For the search loss combinations, loss_bbox weight for ATSS sets to 1 (instead of 2). Please see more details here.

Quick start to train the model with searched/default loss combinations

# cls - classification, reg - regression

# Train with searched classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with searched classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --launcher pytorch;

# Train with default classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with default classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --launcher pytorch;

Acknowledgement

Thanks to MMDetection Team for their powerful deep learning detection framework. Thanks to Huawei Noah's Ark Lab AI Theory Group for their numerous V100 GPUs.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{
  liu2021loss,
  title={Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search},
  author={Peidong Liu and Gengwei Zhang and Bochao Wang and Hang Xu and Xiaodan Liang and Yong Jiang and Zhenguo Li},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=5jzlpHvvRk}
}
@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}
Owner
Peidong Liu(刘沛东)
Master Student in CS @ Tsinghua University. My research interest lies in scene understanding, visual tracking and AutoML for loss function.
Peidong Liu(刘沛东)
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022