PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

Overview

License Python TensorFlow Run Status

PyDEns

PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve

This page outlines main capabilities of PyDEns. To get an in-depth understanding we suggest you to also read the tutorial.

Getting started with PyDEns: solving common PDEs

Let's solve poisson equation

using simple feed-forward neural network with tanh-activations. The first step is to add a grammar of tokens - expressions used for writing down differential equations - to the current namespace:

from pydens import Solver, NumpySampler, add_tokens
import numpy as np

add_tokens()
# we've now got functions like sin, cos, D in our namespace. More on that later!

You can now set up a PyDEns-model for solving the task at hand using configuration dictionary. Note the use of differentiation token D and sin-token:

pde = {'n_dims': 2,
       'form': lambda u, x, y: D(D(u, x), x) + D(D(u, y), y) - 5 * sin(np.pi * (x + y)),
       'boundary_condition': 1}

body = {'layout': 'fa fa fa f',
        'units': [15, 25, 15, 1],
        'activation': [tf.nn.tanh, tf.nn.tanh, tf.nn.tanh]}

config = {'body': body,
          'pde': pde}

us = NumpySampler('uniform', dim=2) # procedure for sampling points from domain

and run the optimization procedure

dg = Solver(config)
dg.fit(batch_size=100, sampler=us, n_iters=1500)

in a fraction of second we've got a mesh-free approximation of the solution on [0, 1]X[0, 1]-square:

Going deeper into PyDEns-capabilities

PyDEns allows to do much more than just solve common PDEs: it also deals with (i) parametric families of PDEs and (ii) PDEs with trainable coefficients.

Solving parametric families of PDEs

Consider a family of ordinary differential equations

Clearly, the solution is a sin wave with a phase parametrized by ϵ:

Solving this problem is just as easy as solving common PDEs. You only need to introduce parameter in the equation, using token P:

pde = {'n_dims': 1,
       'form': lambda u, t, e: D(u, t) - P(e) * np.pi * cos(P(e) * np.pi * t),
       'initial_condition': 1}

config = {'pde': pde}
# One for argument, one for parameter
s = NumpySampler('uniform') & NumpySampler('uniform', low=1, high=5)

dg = Solver(config)
dg.fit(batch_size=1000, sampler=s, n_iters=5000)
# solving the whole family takes no more than a couple of seconds!

Check out the result:

Solving PDEs with trainable coefficients

With PyDEns things can get even more interesting! Assume that the initial state of the system is unknown and yet to be determined:

Of course, without additional information, the problem is undefined. To make things better, let's fix the state of the system at some other point:

Setting this problem requires a slightly more complex configuring. Note the use of V-token, that stands for trainable variable, in the initial condition of the problem. Also pay attention to train_steps-key of the config, where two train steps are configured: one for better solving the equation and the other for satisfying the additional constraint:

pde = {'n_dims': 1,
       'form': lambda u, t: D(u, t) - 2 * np.pi * cos(2 * np.pi * t),
       'initial_condition': lambda: V(3.0)}

config = {'pde': pde,
          'track': {'u05': lambda u, t: u - 2},
          'train_steps': {'initial_condition_step': {'scope': 'addendums',
                                                     'loss': {'name': 'mse', 'predictions': 'u05'}},
                          'equation_step': {'scope': '-addendums'}}}

s1 = NumpySampler('uniform')
s2 = ConstantSampler(0.5)

Model-fitting comes in two parts now: (i) solving the equation and (ii) adjusting initial condition to satisfy the additional constraint:

dg.fit(batch_size=150, sampler=s1, n_iters=2000, train_mode='equation_step')
dg.fit(batch_size=150, sampler=s2, n_iters=2000, train_mode='initial_condition_step')

Check out the results:

Installation

First of all, you have to manually install tensorflow, as you might need a certain version or a specific build for CPU / GPU.

Stable python package

With modern pipenv

pipenv install pydens

With old-fashioned pip

pip3 install pydens

Development version

pipenv install git+https://github.com/analysiscenter/pydens.git
pip3 install git+https://github.com/analysiscenter/pydens.git

Installation as a project repository:

Do not forget to use the flag --recursive to make sure that BatchFlow submodule is also cloned.

git clone --recursive https://github.com/analysiscenter/pydens.git

In this case you need to manually install the dependencies.

Citing PyDEns

Please cite PyDEns if it helps your research.

Roman Khudorozhkov, Sergey Tsimfer, Alexander Koryagin. PyDEns framework for solving differential equations with deep learning. 2019.
@misc{pydens_2019,
  author       = {Khudorozhkov R. and Tsimfer S. and Koryagin. A.},
  title        = {PyDEns framework for solving differential equations with deep learning},
  year         = 2019
}
Comments
  • compilation error in Google Collab

    compilation error in Google Collab

    I am getting compilation error in the coding line given below...Kindly tell me ....how to fix it.... I am using google collab for compilation

    dg = Solver(config) dg.fit(batch_size=50, sampler=s, n_iters=300, bar='notebook')

    OperatorNotAllowedInGraphError Traceback (most recent call last) in () ----> 1 dg = Solver(config) 2 dg.fit(batch_size=50, sampler=s, n_iters=300, bar='notebook')

    15 frames /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py in _disallow_in_graph_mode(self, task) 521 raise errors.OperatorNotAllowedInGraphError( 522 "{} is not allowed in Graph execution. Use Eager execution or decorate" --> 523 " this function with @tf.function.".format(task)) 524 525 def _disallow_bool_casting(self):

    OperatorNotAllowedInGraphError: iterating over tf.Tensor is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.

    opened by sumantkrsoni 11
  • "No module named 'pydens.batchflow' "

    I'm using Spyder3 to run this code:

    ` import pydens as pde from pydens import D import numpy as np import tensorflow as tf

    pde.add_tokens()

    pde = {'n_dims': 2, 'form': lambda u, x, y: D(D(u, x), x) + D(D(u, y), y) - 5 * pde.sin(np.pi * (x + y)), 'boundary_condition': 1}

    body = {'layout': 'fa fa fa f', #estrutura da rede neural (layers) 'units': [15, 25, 15, 1], #neurônios por camada 'activation': [tf.nn.tanh, tf.nn.tanh, tf.nn.tanh]} #ativação advinda do TFlow

    config = {'body': body, 'pde': pde}

    us = pde.NumpySampler('uniform', dim=2)

    dg = pde.Solver(config) dg.fit(batch_size=100, sampler=us, n_iters=1500) ` ...and I'm getting this error:

    `File "C:\Users\my_user\Anaconda3\lib\site-packages\pydens\letters.py", line 20, in from .batchflow.models.tf.layers import conv_block

    ModuleNotFoundError: No module named 'pydens.batchflow'`

    My tersorflow are actualized and I got PyDEns and Batchflow with pip on conda terminal.

    opened by adsmendesdaniel 9
  • How can I change the interval of x

    How can I change the interval of x

    Hello Everyone I want to change the interval of x. Instead of using the default one [0,1], I want to have [1, 1.5] so I can define my boundary conditions in these two points? How could I modify the code?

    opened by katayooneshkofti 3
  • How to install easily with PIP command?

    How to install easily with PIP command?

    Dear Guys I am extremely interested in working with your product but I have a problem installing the packages. I installed using different ways but I faced "No module named 'pydens.batchflow'" and I do not have any idea to solve it. I will appreciate it if could do a favor of installing.

    Thanks in advanced

    opened by hossein-amini67 2
  • Compilation error

    Compilation error

    Hello, I want to code according to the pydens and during compilation I am using an error at "dg solver line". Kindly fix it ASAP so that I can move further to code my problem.

    I am using tensorflow 1.15 version ======================code================

    %tensorflow_version 1.x import os import sys

    Stop TF from showing unnecessary deprecation warnings

    import warnings warnings.filterwarnings('ignore') from tensorflow import logging logging.set_verbosity(logging.ERROR) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    import numpy as np import tensorflow as tf from tqdm import tqdm_notebook import matplotlib.pyplot as plt

    sys.path.append('..') # this line is not needed if PyDEns is installed as package from pydens import Solver, NumpySampler, cart_prod, add_tokens from pydens import plot_loss, plot_pair_1d, plot_2d, plot_sections_2d, plot_sections_3d

    add_tokens()

    describing pde-problem in pde-dict

    pde = { 'n_dims': 1, 'form': lambda u, t: D(u, t) - 2 * np.pi * cos(2 * np.pi * t), 'initial_condition': 1 }

    put it together in model-config

    config = { 'pde': pde, 'track': {'dt': lambda u, t: D(u, t)} # allows to later fetch this value from the model }

    uniform sampling scheme

    s = NumpySampler('uniform')

    train the network on batches of 100 points

    dg = Solver(config) dg.fit(batch_size=100, sampler=s, n_iters=2000, bar='notebook')

    plot_loss(dg.loss, color='cornflowerblue')

    plot real solution and network approximation

    pts = np.linspace(0, 1, 200).reshape(-1, 1) sol = lambda t: np.sin(2 * np.pi * t) + 1 true = [sol(t[0]) for t in pts] approxs = dg.solve(pts)

    plt.plot(pts, true, 'b--', linewidth=3, label='True solution') plt.plot(pts, approxs, 'r', label='Network approximation') plt.xlabel(r'$t$', fontdict={'fontsize': 14}) plt.legend() plt.show()

    plot approximation of solution-derivative

    der = lambda t: 2 * np.pi * np.cos(2 * np.pi * t) true_der = [der(t[0]) for t in pts] ders = dg.solve(pts, fetches='dt')

    plt.plot(pts, true_der, 'b--', linewidth=3, label=r'True derivative') plt.plot(pts, ders, 'r', label=r'Network approximation of $\frac{d u}{d t}$') plt.xlabel(r'$t$', fontdict={'fontsize': 14}) plt.legend() plt.show()

    plot_pair_1d(model=dg, solution=lambda t: np.sin(2np.pit)+1, confidence=0.15, alpha=0.2)

    plot_pair_1d(model=dg, solution=lambda t: 2 * np.pi * np.cos(2 * np.pi * t), fetches='dt')


    ======================error is==================== OperatorNotAllowedInGraphError Traceback (most recent call last) in () 40 41 # train the network on batches of 100 points ---> 42 dg = Solver(config) 43 dg.fit(batch_size=100, sampler=s, n_iters=2000, bar='notebook') 44

    15 frames /tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _disallow_in_graph_mode(self, task) 521 raise errors.OperatorNotAllowedInGraphError( 522 "{} is not allowed in Graph execution. Use Eager execution or decorate" --> 523 " this function with @tf.function.".format(task)) 524 525 def _disallow_bool_casting(self):

    OperatorNotAllowedInGraphError: iterating over tf.Tensor is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.

    opened by sumantkrsoni 2
  • "SyntalxTreeNode" object not iterable error

    While running the solved example:

    import os
    import warnings
    import sys
    
    warnings.filterwarnings('ignore')
    from tensorflow import logging
    logging.set_verbosity(logging.ERROR)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    
    import numpy as np
    import tensorflow as tf
    from tqdm import tqdm_notebook
    import matplotlib.pyplot as plt
    
    sys.path.append('..')
    from pydens import Solver, NumpySampler, cart_prod
    from pydens import plot_loss, plot_2d, plot_pair_1d, plot_sections_2d, plot_sections_3d
    
    from pydens import add_tokens
    add_tokens()
    
    # describing pde-problem in pde-dict
    pde = {'n_dims': 1,
           'form': lambda u, t: D(u, t) - 2 * np.pi * cos(2 * np.pi * t),
           'initial_condition': 1 # will be transformed into callable returning 1
          }
    
    # put it together in model-config
    config = {'pde': pde,
              'track': {'dt': lambda u, t: D(u, t)}}
    
    # uniform sampling scheme
    s = NumpySampler('uniform')
    
    #
    ## train the network on batches of 100 points
    dg = Solver(config)
    

    I run into the following error: TypeError: 'SyntaxTreeNode' object is not iterable

    The stacktrace is:

    File "<ipython-input-21-1b5c74329633>", line 1, in <module>
        runfile('/home/nirvik/Documents/neuronal_model_python/temp.py', wdir='/home/nirvik/Documents/neuronal_model_python')
    
      File "/usr/lib/python3/dist-packages/spyder/utils/site/sitecustomize.py", line 705, in runfile
        execfile(filename, namespace)
    
      File "/usr/lib/python3/dist-packages/spyder/utils/site/sitecustomize.py", line 102, in execfile
        exec(compile(f.read(), filename, 'exec'), namespace)
    
      File "/home/nirvik/Documents/neuronal_model_python/temp.py", line 38, in <module>
        dg = Solver(config)
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/wrapper.py", line 21, in __init__
        self.model = model_class(config)
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/batchflow/batchflow/models/tf/base.py", line 262, in __init__
        super().__init__(*args, **kwargs)
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/batchflow/batchflow/models/base.py", line 38, in __init__
        self.build(*args, **kwargs)
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/batchflow/batchflow/models/tf/base.py", line 331, in build
        config = self.build_config()
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/model_tf.py", line 117, in build_config
        n_parameters = get_num_parameters(form[0])
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/syntax_tree.py", line 77, in get_num_parameters
        tree = form(*[SyntaxTreeNode('_' + str(i)) for i in range(n_args)])
    
      File "/home/nirvik/Documents/neuronal_model_python/temp.py", line 25, in <lambda>
        'form': lambda u, t: D(u, t) - 2 * np.pi * 2 * t^3,
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/tokens.py", line 63, in <lambda>
        if isinstance(args[0], SyntaxTreeNode) else method_(*args, **kwargs))
    
      File "/home/nirvik/.local/lib/python3.6/site-packages/pydens/letters.py", line 82, in D
        return np.stack([self.D(func, coordinate) for coordinate in coordinates],
    ```
    
    I am new to using this package...please help.
    opened by NirvikNU 2
  • Plotting problem

    Plotting problem

    pyDens not plotting after running solver.fit() on both Jupyter notebook and google colaboratory. Using the first example from Github solver.fit() seems to run fine but I was expecting a plot of the results to appear. What am i missing?

    opened by babycamel 1
  • Torch

    Torch

    This pr adds torch-based model and solver and removes tensorflow completely. Leaves only one tutorial covering wide range of examples; updates pylint to working state.

    Classes added by this pr:

    • TorchModel
    • Solver
    • ConvBlockModel - model based on conv_block from batchflow.

    NOTE: despite the diff looking complex, there are basically two files in the library: model_torch.py and the tutorial notebook.

    opened by akoryagin 1
  • Solver and loader

    Solver and loader

    Main addition

    • Add saving and loading capabilities to a PyDEns-Solver class. Saving is done via Solver.save-method, while loading is performed by adding path-argument to a Solver-initialization procedure.
    opened by akoryagin 1
  • There are some references so I can learn the body

    There are some references so I can learn the body "layout characters/symbols"?

    For example: """ body = {'layout': 'fa f', 'units': [10, 1], 'activation': [tf.nn.tanh,]} """ This means that there are one first full connected layer with 10 units and activation "tanh" ('fa') and a final full connected layer with no activation ('f').

    But what about: """ body = {'layout': 'faR fa fa+ f', 'units': [10, 25, 10, 1], 'activation': [tf.nn.tanh, tf.nn.tanh, tf.nn.tanh]} """ What does 'R' mean? And the character '+'?

    Thank you.

    opened by adsmendesdaniel 1
  • Plotutils update

    Plotutils update

    Main additions

    • update plot utils: now all plot funcs for 3d-problems allow for three different plot-modes: imshow, contourf and 3d-view
    • move file with plot utils into pydens-module for convenient usage in tutorials
    • update tutorials using plot-funcs thus making them shorter
    opened by akoryagin 1
  • LBFGS optimizer not working

    LBFGS optimizer not working

    The code block below results in error:

    solver = Solver(equation=pde, ndims=2,constraints=constraints,domain=domain,layout='fa fa f', units=(10,20,1), activation='Sigmoid')
    solver.fit(batch_size=100, niters=5000, lr=0.01,optimizer='LBFGS')
    

    Error:

      0%|                                                                                   | 0/5000 [00:00<?, ?it/s]
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    File <timed exec>:8, in <module>
    
    File D:\anaconda3\envs\pydens_gpu\lib\site-packages\pydens\model_torch.py:461, in Solver.fit(self, niters, batch_size, sampler, loss_terms, optimizer, criterion, lr, **kwargs)
        459 # Optimizer step.
        460 loss.backward()
    --> 461 self.optimizer.step()
        463 # Gather and store training stats.
        464 self.losses.append(loss.detach().cpu().numpy())
    
    File D:\anaconda3\envs\pydens_gpu\lib\site-packages\torch\optim\optimizer.py:88, in Optimizer._hook_for_profile.<locals>.profile_hook_step.<locals>.wrapper(*args, **kwargs)
         86 profile_name = "Optimizer.step#{}.step".format(obj.__class__.__name__)
         87 with torch.autograd.profiler.record_function(profile_name):
    ---> 88     return func(*args, **kwargs)
    
    File D:\anaconda3\envs\pydens_gpu\lib\site-packages\torch\autograd\grad_mode.py:27, in _DecoratorContextManager.__call__.<locals>.decorate_context(*args, **kwargs)
         24 @functools.wraps(func)
         25 def decorate_context(*args, **kwargs):
         26     with self.clone():
    ---> 27         return func(*args, **kwargs)
    
    TypeError: step() missing 1 required positional argument: 'closure'
    

    Any idea on how to use LBFGS optimizer ?

    opened by pradhyumna85 0
  • Learning from Data

    Learning from Data

    Sorry if this is obvious of a question, but is there a way to learn the PDE from data? I don't have the PDE as is shown throughout the examples https://github.com/analysiscenter/pydens/blob/master/tutorials/1.%20Solving%20PDEs.ipynb to define a function for the solver.

    opened by cadop 0
  • How to solve if Parametric heat-equation in the example has 2 or 3 boundary conditions?

    How to solve if Parametric heat-equation in the example has 2 or 3 boundary conditions?

    Hi, Can Pydens handle the PDE with more than 2 boundary conditions? In the parametric heat-equation example, would you please show me how to change the boundary condition to: case 1: u(x,y,t=0)=1000 u(x=0, y=0, t)=200 case 2: u(x,y,t=0)=1000 u(x=0, y=0, t)=200 u(xe,0)=u(-xe,0)=u(0,ye)=u(ye,0)=1000 (e represents edge, which indicates all boundaries have same value)

    opened by jingfu9402 1
  • Pyden Installation Problem

    Pyden Installation Problem

    Dear all, I have a problem installing the packages. In Jypyter notebook , Python 3; I use pip install pydens and it has installed successfully. Next when writing from pydens import Solver, NumpySampler, add_tokens getting error "module 'tensorflow' has no attribute 'layers'" Plz fix it.

    opened by Arup-nit 1
Releases(v1.0.2)
Owner
Data Analysis Center
Data Analysis Center
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022