Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

Overview

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection.

Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation,
Kemal Oksuz, Baris Can Cam, Fehmi Kahraman, Zeynep Sonat Baltaci, Emre Akbas, Sinan Kalkan, BMVC 2021. (arXiv pre-print)

Summary

Mask-aware IoU: Mask-aware IoU (maIoU) is an IoU variant for better anchor assignment to supervise instance segmentation methods. Unlike the standard IoU, Mask-aware IoU also considers the ground truth masks while assigning a proximity score for an anchor. As a result, for example, if an anchor box overlaps with a ground truth box, but not with the mask of the ground truth, e.g. due to occlusion, then it has a lower score compared to IoU. Please check out the examples below for more insight. Replacing IoU by our maIoU in the state of the art ATSS assigner yields both performance improvement and efficiency (i.e. faster inference) compared to the standard YOLACT method.

maYOLACT Detector: Thanks to the efficiency due to ATSS with maIoU assigner, we incorporate more training tricks into YOLACT, and built maYOLACT Detector which is still real-time but significantly powerful (around 6 AP) than YOLACT. Our best maYOLACT model reaches SOTA performance by 37.7 mask AP on COCO test-dev at 25 fps.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@inproceedings{maIoU,
       title = {Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation},
       author = {Kemal Oksuz and Baris Can Cam and Fehmi Kahraman and Zeynep Sonat Baltaci and Sinan Kalkan and Emre Akbas},
       booktitle = {The British Machine Vision Conference (BMCV)},
       year = {2021}
}

Specification of Dependencies and Preparation

  • Please see get_started.md for requirements and installation of mmdetection.
  • Please refer to introduction.md for dataset preparation and basic usage of mmdetection.

Trained Models

Here, we report results in terms of AP (higher better) and oLRP (lower better).

Multi-stage Object Detection

Comparison of Different Assigners (on COCO minival)

Scale Assigner mask AP mask oLRP Log Config Model
400 Fixed IoU 24.8 78.3 log config model
400 ATSS w. IoU 25.3 77.7 log config model
400 ATSS w. maIoU 26.1 77.1 log config model
550 Fixed IoU 28.5 75.2 log config model
550 ATSS w. IoU 29.3 74.5 log config model
550 ATSS w. maIoU 30.4 73.7 log config model
700 Fixed IoU 29.7 74.3 log config model
700 ATSS w. IoU 30.8 73.3 log config model
700 ATSS w. maIoU 31.8 72.5 log config model

maYOLACT Detector (on COCO test-dev)

Scale Backbone mask AP fps Log Config Model
maYOLACT-550 ResNet-50 35.2 30 Coming Soon
maYOLACT-700 ResNet-50 37.7 25 Coming Soon

Running the Code

Training Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for training code. As an example, to train maYOLACT using images with 550 scale on 4 GPUs as we did, use the following command:

./tools/dist_train.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py 4

Test Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for test code. As an example, first download a trained model using the links provided in the tables below or you train a model, then run the following command to test a model model on multiple GPUs:

./tools/dist_test.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} 4 --eval bbox segm 

You can also test a model on a single GPU with the following example command:

python tools/test.py configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} --eval bbox segm
Owner
Kemal Oksuz
Kemal Oksuz
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022